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Overview: Network of Europe‘s 
top 12,000 political accounts
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695 accounts, see p. 7
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206 accounts, see p. 19
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495 accounts, see p. 19

ITALIAN
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1,989 accounts, see p. 9

SPANISH
3,703 accounts, see p. 15

SWEDISH
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310 accounts, see p. 19

Nodes are accounts, 
edges are follower relations. 

Node size represents centrality. 
Node colors represent 
clusters/communities.
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Britain-based International News 
media are right at the center of the 

European Twittersphere

Britain-based International News 

Portuguese and 
Greek Accounts
Portuguese and Portuguese and 

The visualization of Europe’s political Twittersphere is 

star-shaped. The center consists of accounts directly 
related to EU politics, such as European Parliament 

members and candidates and (mostly British) inter-
national news media. 

The peripheral clusters are structured nationally, 

representing the political Twitterspheres of single or 

multiple countries. Direct connections between users 

from certain countries exist and some accounts have 

particular roles as transnational information hubs 
(situated at the edges of, or in-between, clusters). 

However, the accounts in the central trans-
European sphere are the most important in 

terms of Europeanwide information diffusion.

Eastern Europe missing?
Only very few Eastern European accounts made 

it into the study, due to three reasons:

1. Twitter is hardly used in Eastern Europe

2. Users did not have enough followers to pass the 

threshold of 250 incoming connections (see page 4)

3. Users hardly tweeted about the EP elections. 

BRITISH & IRISHBRITISH & IRISH
The Spanish part of the Twittersphere is 
the largest in terms of accounts 
included in the studyincluded in the study

11,844 nodes (Twitter accounts)
2,084,207 edges (follower relations)
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73 Prozent der Bevölkerung der Europäischen Union nutzten 2013 das 
Internet. Tendenz steigend. Kurz vor der Europawahl wollten wir daher 
wissen: Wie präsent und aktiv sind die antieuropäischen Populisten im 
Internet? Resultat: Die Anti-Europäer sind isoliert und zersplittert. Es 
gibt aber eine lebendige pro-europäische Netzöffentlichkeit. Nur zivilgesell - 
schaftliche Initiativen brauchen noch mehr Unterstützung.

Da sich immer mehr Menschen von traditio-
nellen Wahlmustern lösen und sich kurzfristig 
entschließen, welcher Partei sie ihre Stimme 
bei der Europawahl 2014 geben, gewinnen zwei 
Faktoren an Bedeutung: Der Endspurt der Kandi - 
daten und der Ort, an dem er stattfindet. Dabei 
wird das Internet als Informations quelle immer 
wichtiger. Wenn man davon ausgeht, dass 
populistische Parteien und Bewegungen weni-
ger Zugang zu den klassischen Medien haben, 
könnte man annehmen, dass sie aktiver das 
Internet nutzen, um ihre Botschaft zu verbreiten. 
Ist das der Fall? Und eint sie das gemeinsame 
Feindbild vielleicht so sehr, dass sie sich verbün-
den? In ihren Ländern und über Landesgren-
zen hinweg? Welche Rolle nehmen sie in ihren  

„nationalen“ Online-Debatten ein? Sind sie dort 
– im Gegensatz zu den klassischen Medien –  
zentrale Akteure? Und deshalb Meinungsführer? 

Um diese Fragen zu beantworten haben wir 
eine Art Kernspintomographie des Internets 
erstellen lassen. Diese Karten zeigen uns, 
was normalerweise nicht sichtbar ist, nämlich 
den Teil des Internets, der populistische und 
antieuropäische Inhalte verbreitet und die  
Dynamik des Austauschs zwischen den ein-
zelnen Seiten, Blogs, Foren etc. Indem wir ihre 
Verknüpfungen und Interaktionen gemes-
sen und visualisiert haben, können wir uns 
ein Bild machen, wer mit wem spricht, wer 
die Debatte treibt, wo sie stattfindet und wie 
isoliert oder integriert die Akteure sind. Wir 
haben die Netzwerke deutscher, französischer, 
britischer, niederländischer, italienischer und 
polnischer Anti-Europäer analysiert. Und 
um Vergleichsdaten zu haben, haben wir für 
Deutschland und Frankreich auch das Netz-
werk der Pro-Europäer gescannt.
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Informationen gehandelt werden und damit 
bilden sie für sich auch gemeinsame Weltan-
schauungen, selbst wenn diese sich entlang  
traditioneller Konfliktlinien organisieren. Die 
Karten zeigen sehr deutlich, dass es eine 
lebendige europäische Netzöffentlichkeit gibt. 
Dies ist ein entscheidender Faktor. Nicht nur 
für jene, die sich schon in diesem Netzwerk 
bewegen, sondern auch für jene, die sich im 
Internet über europäische Politik informieren 

Quelle: linkfluence

988 Internetseiten mit antieuropäischen Inhalten
In Deutschland, Frankreich, Großbritannien, Italien, den Niederlanden und Polen
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wollen. Grad der Verknüpfung und Höhe des 
Austauschs beeinflussen nämlich wesentlich 
die Relevanz, die ihnen Suchmaschinen zutei-
len und steigert damit signifikant Sichtbarkeit 
und Erreichbarkeit der Seiten.

Geradezu dramatisch allerdings ist die Abwe-
senheit der Zivilgesellschaft. Parteien und Insti - 
tutionen dominieren das Netz. Hier besteht 
dringender Handlungsbedarf.
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Europäische Netzwerke 

Die Netzöffentlichkeit Europas ist ebenso nach 
Sprach- und Landesgrenzen fragmentiert wie 
die traditionelle. Das gilt vor allem für die 
 Netzwerke der populistischen Parteien. Deren 
prominente Führungsfiguren haben sich zwar 
in den vergangenen Monaten in den Medien 
gehalten mit Reisen, Treffen und Kooperations- 
absichten, unsere Karten aber zeigen, dass es 
keinerlei Austausch, keine Verbindungen zwi-
schen diesen Parteien gibt (siehe Grafik oben). 
Zwar haben wir insgesamt 988 europaskepti-
sche Internetseiten in den untersuchten Län-
dern identifizieren können, aber unter diesen 
988 konnten wir nur vier Verknüpfungen finden. 
Die italienische Aktivisten-Seite bastaeuro.it 
bezieht sich einmal auf den französischen 
Front National, einmal auf die niederländische 
Partei der Freiheit. Und die britische UKIP 
wird zweimal auf französischen Debattensei-
ten zitiert (La lettre volée und Decapt’actu: Ers-
tes ist ein Blog, zweites eine Nachrichtenseite). 
Es gibt also kein paneuropäisches Netzwerk 
der antieuropäischen Populisten in Internet, es 
gibt keine zentrale Austauschstelle oder Ideen- 
werkstatt. Überraschender vielleicht noch ist 

festzustellen, wie isoliert die Bewegungen 
nicht nur auf der euro päischen Bühne, sondern 
auch in ihren nationalen Räumen sind. Selbst 
Parteien wie der französische Front National, 
die schon lange bestehen und deren Vertreter 
sich in ihren Ländern zu Meinungsführern der 
Europaphobie aufgeschwungen haben, finden 
kaum Anerkennung durch Verknüpfung. Es 
mag richtig sein, dass 23 Prozent der franzö-
sischen Jugendlichen sich mittlerweile vorstel-
len könnten, FN zu wählen, und dass Marine 
Le Pen Stammgast in Radio- und Fernseh- 
sendungen ist, das heißt aber keineswegs, 
dass sich auf den politischen Internetseiten 
Frankreichs auf sie bezogen wird, dass sie die 
Online-Debatte anführt oder dass die Seiten 
ihrer Partei oder die ihrer Vertreter und Sym-
pathisanten verknüpft werden. 

Das Netz der Pro-Europäer ist nicht nur nume-
risch stärker (658 versus 251 Seiten in Frankreich 
und Deutschland zusammen). Es ist auch stark 
miteinander verknüpft. Das zeigt, dass nicht 
nur Verbindungen bestehen, sondern auch 
der Austausch zwischen den Pro-Europäern 
funktioniert. Sie formen ein europaweites Netz-
werk, in dem Ideen, Meinungen, Konzepte und 

Quelle: linkfluence

1.638 europapolitische Internetseiten 
In Deutschland und Frankreich mit pro- und antieuropäischen Inhalten; 
in Großbritannien, den Niederlanden, Italien und Polen mit antieuropäischen Inhalten 

© Bertelsmann Stiftung
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haben. Starke Worte allerdings sind das eine. 
Das andere sind Parteiprogramm und politi- 
sches Handeln. Und dort schlagen diese Zwischen- 
rufe nicht auf eine Art durch, die es uns erlaubt 
hätte, die CSU als antieuropäische Partei zu quali- 
fizieren. Weder fordert sie ein Ende des Euro, 
noch eine Auflösung der  Schengen-Zone oder 
gar eine Auflösung der EU als Ganzes. Eine Zwit- 
terrolle aber bleibt. Ihre Vertreter haben oft  
keine Scheu, laut und drastisch aufzutreten  
und schockieren damit vor allem europäische 
Beobachter, denen es schwerfällt einzuschätzen, 
welchen Stellenwert ihre Einlassungen in der 
deutschen Politik haben.         

Die Abwesenheit der Zivilgesellschaft in der 
deutschen europapolitischen Netzdebatte ist 
lamentabel. Gerademal 5,4 Prozent der identifi-
zierten Seiten werden von Vereinen, Netzwerken 
oder anderen zivilgesellschaftlichen Gruppen 
betrieben. Rechnet man großzügig die Medien-
seiten mit ein, kommt man auf 23 Prozent. Das 
heißt 77 Prozent des deutschen europapoliti-
schen Internets wird von Parteien, Parteivertre-
tern und großen Institutionen dominiert.                                                      

Parteichef und Aushängeschild Bernd Lucke 
hat das Twittern nach der Bundestagswahl 
gleich ganz eingestellt. Sein letzter Tweet ist 
vom 23. September 2013. Zu diesem Zeitpunkt 
folgten ihm 4.314 Leser. Seinen Parteikollegen 
Frauke Petry, Hans-Olaf Henkel und Beatrix 
von Storch folgen gerade mal 894, 817 und 589 
Interessierte. Das ist nichts im europäischen 
Vergleich. Die Twitter-Liste der prominentesten 
deutschen Europa-Kritiker wird von dem ehe-
maligen FDP-Bundestagsabgeordneten Frank 
Schäffler angeführt. Ihm folgen 8.051 Leser. 
Der Italiener Beppe Grillo aber sendet seine 
Kurznachrichten an 1,44 Millionen Menschen, 
der Niederländer Geert Wilders an 323.000, 
die Französin Marine Le Pen an 280.000 und 
der Brite Nigel Farage an 121.000.       

Die CSU spielt in der europapolitischen Debatte 
in Deutschland eine oft verwirrende Sonder- 
rolle, die vor allem für nicht-deutsche Beobachter 
recht schwierig zu entschlüsseln ist. Auf unserer 
Karte sind ihre Seiten und die ihrer Vertreter 
nicht Teil des europa-kritischen Netzwerkes. Das 
kann überraschen angesichts des Tons der Kom-
mentierung, mit der Markus Söder, Alexander 
Dobrindt und Peter Gauweiler sich in den ver-
gangenen Jahren in den Nachrichten gehalten 

Quelle: linkfluence

Deutschland
73 Internetseiten mit antieuropäischen Inhalten

© Bertelsmann Stiftung
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73 Prozent der Bevölkerung der Europäischen Union nutzten 2013 das 
Internet. Tendenz steigend. Kurz vor der Europawahl wollten wir daher 
wissen: Wie präsent und aktiv sind die antieuropäischen Populisten im 
Internet? Resultat: Die Anti-Europäer sind isoliert und zersplittert. Es 
gibt aber eine lebendige pro-europäische Netzöffentlichkeit. Nur zivilgesell - 
schaftliche Initiativen brauchen noch mehr Unterstützung.

Da sich immer mehr Menschen von traditio-
nellen Wahlmustern lösen und sich kurzfristig 
entschließen, welcher Partei sie ihre Stimme 
bei der Europawahl 2014 geben, gewinnen zwei 
Faktoren an Bedeutung: Der Endspurt der Kandi - 
daten und der Ort, an dem er stattfindet. Dabei 
wird das Internet als Informations quelle immer 
wichtiger. Wenn man davon ausgeht, dass 
populistische Parteien und Bewegungen weni-
ger Zugang zu den klassischen Medien haben, 
könnte man annehmen, dass sie aktiver das 
Internet nutzen, um ihre Botschaft zu verbreiten. 
Ist das der Fall? Und eint sie das gemeinsame 
Feindbild vielleicht so sehr, dass sie sich verbün-
den? In ihren Ländern und über Landesgren-
zen hinweg? Welche Rolle nehmen sie in ihren  

„nationalen“ Online-Debatten ein? Sind sie dort 
– im Gegensatz zu den klassischen Medien –  
zentrale Akteure? Und deshalb Meinungsführer? 

Um diese Fragen zu beantworten haben wir 
eine Art Kernspintomographie des Internets 
erstellen lassen. Diese Karten zeigen uns, 
was normalerweise nicht sichtbar ist, nämlich 
den Teil des Internets, der populistische und 
antieuropäische Inhalte verbreitet und die  
Dynamik des Austauschs zwischen den ein-
zelnen Seiten, Blogs, Foren etc. Indem wir ihre 
Verknüpfungen und Interaktionen gemes-
sen und visualisiert haben, können wir uns 
ein Bild machen, wer mit wem spricht, wer 
die Debatte treibt, wo sie stattfindet und wie 
isoliert oder integriert die Akteure sind. Wir 
haben die Netzwerke deutscher, französischer, 
britischer, niederländischer, italienischer und 
polnischer Anti-Europäer analysiert. Und 
um Vergleichsdaten zu haben, haben wir für 
Deutschland und Frankreich auch das Netz-
werk der Pro-Europäer gescannt.
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wollen. Grad der Verknüpfung und Höhe des 
Austauschs beeinflussen nämlich wesentlich 
die Relevanz, die ihnen Suchmaschinen zutei-
len und steigert damit signifikant Sichtbarkeit 
und Erreichbarkeit der Seiten.

Geradezu dramatisch allerdings ist die Abwe-
senheit der Zivilgesellschaft. Parteien und Insti - 
tutionen dominieren das Netz. Hier besteht 
dringender Handlungsbedarf.
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Europaphobie aufgeschwungen haben, finden 
kaum Anerkennung durch Verknüpfung. Es 
mag richtig sein, dass 23 Prozent der franzö-
sischen Jugendlichen sich mittlerweile vorstel-
len könnten, FN zu wählen, und dass Marine 
Le Pen Stammgast in Radio- und Fernseh- 
sendungen ist, das heißt aber keineswegs, 
dass sich auf den politischen Internetseiten 
Frankreichs auf sie bezogen wird, dass sie die 
Online-Debatte anführt oder dass die Seiten 
ihrer Partei oder die ihrer Vertreter und Sym-
pathisanten verknüpft werden. 

Das Netz der Pro-Europäer ist nicht nur nume-
risch stärker (658 versus 251 Seiten in Frankreich 
und Deutschland zusammen). Es ist auch stark 
miteinander verknüpft. Das zeigt, dass nicht 
nur Verbindungen bestehen, sondern auch 
der Austausch zwischen den Pro-Europäern 
funktioniert. Sie formen ein europaweites Netz-
werk, in dem Ideen, Meinungen, Konzepte und 

Quelle: linkfluence
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haben. Starke Worte allerdings sind das eine. 
Das andere sind Parteiprogramm und politi- 
sches Handeln. Und dort schlagen diese Zwischen- 
rufe nicht auf eine Art durch, die es uns erlaubt 
hätte, die CSU als antieuropäische Partei zu quali- 
fizieren. Weder fordert sie ein Ende des Euro, 
noch eine Auflösung der  Schengen-Zone oder 
gar eine Auflösung der EU als Ganzes. Eine Zwit- 
terrolle aber bleibt. Ihre Vertreter haben oft  
keine Scheu, laut und drastisch aufzutreten  
und schockieren damit vor allem europäische 
Beobachter, denen es schwerfällt einzuschätzen, 
welchen Stellenwert ihre Einlassungen in der 
deutschen Politik haben.         

Die Abwesenheit der Zivilgesellschaft in der 
deutschen europapolitischen Netzdebatte ist 
lamentabel. Gerademal 5,4 Prozent der identifi-
zierten Seiten werden von Vereinen, Netzwerken 
oder anderen zivilgesellschaftlichen Gruppen 
betrieben. Rechnet man großzügig die Medien-
seiten mit ein, kommt man auf 23 Prozent. Das 
heißt 77 Prozent des deutschen europapoliti-
schen Internets wird von Parteien, Parteivertre-
tern und großen Institutionen dominiert.                                                      

Parteichef und Aushängeschild Bernd Lucke 
hat das Twittern nach der Bundestagswahl 
gleich ganz eingestellt. Sein letzter Tweet ist 
vom 23. September 2013. Zu diesem Zeitpunkt 
folgten ihm 4.314 Leser. Seinen Parteikollegen 
Frauke Petry, Hans-Olaf Henkel und Beatrix 
von Storch folgen gerade mal 894, 817 und 589 
Interessierte. Das ist nichts im europäischen 
Vergleich. Die Twitter-Liste der prominentesten 
deutschen Europa-Kritiker wird von dem ehe-
maligen FDP-Bundestagsabgeordneten Frank 
Schäffler angeführt. Ihm folgen 8.051 Leser. 
Der Italiener Beppe Grillo aber sendet seine 
Kurznachrichten an 1,44 Millionen Menschen, 
der Niederländer Geert Wilders an 323.000, 
die Französin Marine Le Pen an 280.000 und 
der Brite Nigel Farage an 121.000.       

Die CSU spielt in der europapolitischen Debatte 
in Deutschland eine oft verwirrende Sonder- 
rolle, die vor allem für nicht-deutsche Beobachter 
recht schwierig zu entschlüsseln ist. Auf unserer 
Karte sind ihre Seiten und die ihrer Vertreter 
nicht Teil des europa-kritischen Netzwerkes. Das 
kann überraschen angesichts des Tons der Kom-
mentierung, mit der Markus Söder, Alexander 
Dobrindt und Peter Gauweiler sich in den ver-
gangenen Jahren in den Nachrichten gehalten 

Quelle: linkfluence
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Nationale Netzwerke

Deutschland – Pro-Europäer dominieren

Deutschland ist zwar das größte Land der Euro- 
päischen Union, aber sein politisches Netz ist 
verhältnismäßig schwach. Nur 349 Internet-
seiten befassen sich mit europapolitischen Inhal-
ten. Zum Vergleich: Frankreich hat – bei weni-
ger Internetnutzern – insgesamt 573 Seiten. 
Die Parteien sind in dieser Aufstellung sehr gut 
vertreten. Das europapolitische Netz organi-
siert sich im Wesentlichen um Parteiseiten und 
die ihrer Abgeordneten. Entsprechend stark 
ist das Netz der Pro-Europäer. Sie betreiben 
276 der 349 Seiten, das heißt rund 80 Prozent 
aller Internetseiten haben eine integrations-
freundliche Ausrichtung. Nur 73 Internetseiten 
verbreiten in Deutschland integrationsfeind- 
liche Inhalte. Das stärkste integrationskritische 
Netzwerk hat die Alternative für Deutschland 
(AfD), das zweitstärkste die NPD. Im Gegensatz 
zur AfD ist das Netzwerk der NPD allerdings 
weitgehend isoliert. Es liegt abgeschieden am 
oberen rechten Rand der Karte. Die AfD liegt 
knapp darunter, ebenfalls am rechten Rand, 
ist aber nicht völlig abgeschieden. Sie steht in 

überraschend enger Verbindung mit den deut-
schen Online-Medien. Keine andere Partei und 
auch keine andere Institution erreicht einen 
derartig hohen Vernetzungsgrad mit den deut-
schen Medienseiten und liegt ihnen auf unserer 
Karte so nahe wie die AfD. Dabei spielen die 
Webseiten der Frankfurter Allgemeinen Zeitung 
eine so herausragende Rolle, dass sie unse-
ren Daten nach fester Bestandteil des europa- 
kritischen Netzwerks sind. Dass Parteianhän-
ger und Sympathisanten der AfD besonders 
intensiv die Kommentarspalten der Online-
Medien nutzen, kann jeder Leser seit Ausbruch 
der Schuldenkrise beobachten, und dass faz.net, 
die ihre Sonderseiten zur Eurokrise wochen-
lang mit „Auf dem Weg in die Transferunion“ 
betitelt hatten, zum natürlichen Publikations-
ort für rettungspolitik-kritische Professoren 
und deren Gleichgesinnte wurde, ist auch kein 
Geheimnis. Wer Google bemüht und „Profes-
soren gegen Euro faz.net“ eingibt, kann sich 
selbst einen Eindruck der Artikeldichte und 
Stimmungslage machen, die sich von der ande-
rer Leitmedien deutlich unterscheidet. Dass 
AfD-Anhänger und Sympathisanten sich zuerst 
in den Kommentarspalten der Medien getrof-
fen und organisiert haben, erklärt womög-
lich auch ihre quasi-Abwesenheit auf Twitter.  

Quelle: linkfluence
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While the majority of people used Friendster for social 
exploration and play, questionable practices were also present. 
Some users used Friendster to distribute drugs while others used 
the service to construct fraudulent profiles for public roasting 
through testimonials. Another problem that emerged was the 
colliding of networks normally kept apart – not everyone was 
prepared to expose their networks to both friends and colleagues.  

4 VISUALIZATION DESIGN 
Our goal with Vizster was to build a visualization system that 
end-users of social networking services could use to facilitate 
discovery and increased awareness of their online community. We 
wanted to support the exploratory and playful aspects of 
Friendster while also giving users easier access to search and 
group patterns. While users regularly explored the network on 
Friendster, the linear format limited such explorations. This led us 
to develop richer network views and exploratory tools, while 
maintaining a local orientation. We also learned that the use of 
imagery was indispensable for identifying people and establishing 
a presentation of self, and so must play a central role in the 
visualization. In addition to helping support the current practices, 
we wanted to make sure that Vizster did not eliminate the data 
that helped users get a sense of people through their profiles. One 
example is the use of re-appropriated profile fields (e.g., inverting 
ages to identify teenagers) for coded communication within a sub-
population. For this reason, we realized that we must make 
searchable profile data very present and accessible in the 
visualization. These goals position Vizster differently from 

traditional social network visualizations used as analysis tools by 
social science researchers. The following description includes the 
implications this approach has had for our design decisions, both 
in terms of presentation and the level of technical sophistication 
exposed by the visualization. 

Vizster presents social networks using a familiar node-link 
representation, where nodes represent members of the system and 
links represent the articulated “friendship” links between them 
(Figures 1,2). In this view, network members are presented using 
both their self-provided name and, if available, a representative 
photograph or image. The networks are presented as egocentric 
networks: networks consisting of an individual and their 
immediate friends. Users can expand the display by selecting 
nodes to make visible others’ immediate friends as well. To the 
right of the network display is a panel presenting a person’s 
profile. As discussed later, the profile panel also provides direct 
manipulation searches over profile text. 

In pursuing this design, we chose to violate Shneiderman’s 
mantra of “overview first, zoom and filter, then details-on-
demand” [19], instead opting for a philosophy of “start with what 
you know, then grow.” An overview of the full network is 
inappropriate in this personal context, as the sheer scale obscures 
useful landmarks. Users of this system are familiar with their 
friends, some friends of friends, and various “celebrities.” Given a 
lack of a priori knowledge of the user’s familiarity with their 
extended network, starting from an egocentric perspective not 
only carries less perceptual and computational burden, but 
guarantees the presence of readily identifiable landmarks for 

 
Figure 2: Screen shot of the Vizster visualization system. The left side presents a network display with controls for community analysis and keyword 
search. The right side consists of a panel displaying a selected member’s profile information. Words in the profile panel that occur in more than one 
profile will highlight on mouse-over; clicking these words will initiate searches for those terms. The checkboxes in the profile panel will initiate an  

“X-ray” view of that particular profile dimension (see Figures 7-9). 
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Figure 10: Community structure visualization using algorithmically 
determined optimum. 

 
 

Figure 11: Community structure visualization after the community slider 
has been dragged to the right. 

Our design hides the complexity of the algorithm from users, 
letting them explore these data mining results through simple 
widgets and visual analysis. Like most data mining methods, the 
community analysis is imperfect, and may identify communities 
at higher or lower granularities than those desired by the user or 
make assignments otherwise perceived as problematic. To help 
combat this, a community slider is provided to explore the various 
states of the clustering (Figures 10 and 11). Moving the slider to 
the far left reverts the display to the initial state of the clustering, 
while moving the slider progressively to the right reveals each 
merge performed by the algorithm. Thus the slider allows the user 
to interactively explore clustering states by moving through 
progressive slices of the computed cluster tree. In practice, we 
have observed users employ the slider until the communities 
“look right” to them. The current community visualization persists 
when additional nodes are expanded or contracted; when the 
visible network changes, an update button is added to the control 
panel, allowing users to re-run the community analysis. 

4.9 Summary 
In summary, the Vizster design constitutes a visual environment 
for the exploration and analysis of online social networks, 
including both topological and profile data. The scale of displayed 
information and layout were chosen to support observed behavior 
and capabilities, and allow users to expand visualized networks 
while maintaining landmarks. Interactive highlighting is used to 
explore friendship relations and unearth “hidden” connections in 
the larger network structure. Panning, zooming, and distortion 
techniques are provided to help users navigate visualized 
networks. Interactive search and attribute visualization (“X-ray” 
mode) enable visual exploration of member profile data. Finally, 
visual community analysis is provided to help users construct and 
explore higher-level structures of their online communities. 

5 IMPLEMENTATION NOTES 
Vizster was written in Java using the prefuse visualization toolkit 
[11], leveraging the toolkit’s filtering, layout, rendering, and 
image management support. We also wrote extensions for 
database connectivity and to perform connectivity highlighting 
and linkage views. To support keyword search, we also integrated 
the Lucene search engine (http://lucene.apache.org) into the 
prefuse framework. Network and profile data for the visualization 
were collected using a custom web crawler and stored in a 
backing MySQL database. To support highlighting connectivity 
queries and faster expansion response times, 2nd order networks 
are loaded from the database upon expansion of nodes, though 
only the 1st order networks are immediately visualized. This 
brings increased memory requirements, but have not proved 
limiting. Source code (but not collected data) for the application is 
available from http://prefuse.sourceforge.net. 

6 USAGE OBSERVATION 
To evaluate and further guide the design of our visualization, we 
observed usage in two environments: a public installation at a 
large party and an informal laboratory setting. While we were 
certainly interested in gauging Vizster’s utility and usability, we 
were also interested in larger patterns of discovery—finding 
unknown people, connections, communities of relevance—and in 
people’s social and affective reactions to the visualization. 

Our first observation of usage was conducted around an 
interactive installation at a 500-person all-night event in San 
Francisco. Many of the party-goers included early adopters of the 
Friendster system, especially those affiliated with the Burning 

Man festival and tech culture. The installation consisted of an 
interactive kiosk and a projection of the visualization onto a large 
screen. Throughout the night, we observed usage of the system by 
over a hundred users, noting the reactions of users and onlookers.  

We also observed usage in an informal laboratory setting. 
Participants consisted of 5 males and 1 female, all Friendster 
members in their early-to-late twenties. To maintain ecological 
validity, we did not provide users with any tutorials or pre-
specified tasks. Instead, we simply asked them to play with the 
system, explore it as they saw fit, and talk-aloud about their 
experiences as they did so. After 15 minutes of exploration, we 
then provided users with a one page reference to the various 
controls, to ensure that we could gauge user reaction to otherwise 
undiscovered features. After 10 more minutes of observation, we 
interviewed participants about their experience and opinions. 

Usage, especially within the party setting, was routinely 
coupled with some form of social play—for example, games to 
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FIG. 1: (Color online) Poincaré disk model. In (a), L1,2,3 and P1,2,3 are examples of hyperbolic lines. Lines L1,2,3 intersect
to form triangle ABC. The sum of its angles a + b + c < ⇡. As opposed to Euclidean geometry, there are infinitely many
lines (examples are P1,2,3) that are parallel to line L1 and go through a point C that does not belong to L1. In (b), a
{7, 3}-tessellation of the hyperbolic plane by equilateral triangles, and the dual {3, 7}-tessellation by regular heptagons are
shown. All triangles and heptagons are of the same hyperbolic size but the size of their Euclidean representations exponentially
decreases as a function of the distance from the center, while their number exponentially increases. In (c), the exponentially
increasing number of men illustrates the exponential expansion of hyperbolic space. The Poincaré tool [1] is used to construct
a {7, 7}-tessellation of the hyperbolic plane, rendering a fragment of The Vitruvian Man by Leonardo da Vinci.

as usual—by a non-analyticity of the partition function.
This phase transition separates two regimes in the en-
semble, cold and hot. Complex networks belong to the
cold regime, while in the hot regime, the standard config-
uration model [18] and classical random graphs [19] turn
out to be two limiting cases with degenerate geometric
structures, Section IX. Sections VII and VIII analyze the
degree distribution and clustering as functions of temper-
ature in the two regimes.

Finally, in Section X, we shift our attention to network
function. Specifically, we analyze the network e�ciency
with respect to targeted communication or transport pro-
cesses without global topology knowledge, made possi-
ble by our geometric approach. We find that such pro-
cesses in networks with strong heterogeneity and cluster-
ing, guided by the underlying hyperbolic space, achieve
the best possible e�ciency according to all measures, and
that this e�ciency is remarkably robust with respect to
even catastrophic levels of network damage. This finding
demonstrates that complex networks have the optimal
structure, allowing for routing with minimal overhead
approaching its theoretical lower bounds, a notoriously
di�cult longstanding problem in routing theory, proven
unsolvable for general graphs [20].

II. HYPERBOLIC GEOMETRY

In this section we review the basic facts about hyper-
bolic geometry. More detailed accounts can be found
in [21–27].

There are only three types of isotropic spaces: Eu-

clidean (flat), spherical (positively curved), and hyper-
bolic (negatively curved). Hyperbolic spaces of constant
curvature are di�cult to envisage because they cannot be
isometrically embedded into any Euclidean space. The
reason is, informally, that the former are “larger” and
have more “space” than the latter.

Because of the fundamental di�culties in represent-
ing spaces of constant negative curvature as subsets of
Euclidean spaces, there are not one but many equivalent
models of hyperbolic spaces. Each model emphasizes dif-
ferent aspects of hyperbolic geometry, but no model si-
multaneously represents all of its properties. In special
relativity, for example, the hyperboloid model is com-
monly used, where the hyperbolic space is represented
by a hyperboloid. Its two di↵erent projections to disks
orthogonal to the main axis of the hyperboloid yield
the Klein and Poincaré unit disk models. In the lat-
ter model, the whole infinite hyperbolic plane H2, i.e.,
the two-dimensional hyperbolic space of constant curva-
ture �1, is represented by the interior of the Euclidean
disk of radius 1, see Fig. 1. The boundary of the disk,
i.e., the circle S1, is not a part of the hyperbolic plane,
but represents its infinitely remote points, called bound-
ary at infinity @H2. Any symmetry transformation on
H2 translates to a symmetry on @H2, and vice versa, a
cornerstone of the anti-de Sitter space/conformal field
theory correspondence [8–10], where quantum gravity on
an anti-de Sitter space is equivalent to a quantum field
theory without gravity on the conformal boundary of the
space. Hyperbolic geodesic lines in the Poincaré model,
i.e., shortest paths between two points at the boundary,
are disk diameters and arcs of Euclidean circles intersect-
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decreases as a function of the distance from the center, while their number exponentially increases. In (c), the exponentially
increasing number of men illustrates the exponential expansion of hyperbolic space. The Poincaré tool [1] is used to construct
a {7, 7}-tessellation of the hyperbolic plane, rendering a fragment of The Vitruvian Man by Leonardo da Vinci.

as usual—by a non-analyticity of the partition function.
This phase transition separates two regimes in the en-
semble, cold and hot. Complex networks belong to the
cold regime, while in the hot regime, the standard config-
uration model [18] and classical random graphs [19] turn
out to be two limiting cases with degenerate geometric
structures, Section IX. Sections VII and VIII analyze the
degree distribution and clustering as functions of temper-
ature in the two regimes.

Finally, in Section X, we shift our attention to network
function. Specifically, we analyze the network e�ciency
with respect to targeted communication or transport pro-
cesses without global topology knowledge, made possi-
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cesses in networks with strong heterogeneity and cluster-
ing, guided by the underlying hyperbolic space, achieve
the best possible e�ciency according to all measures, and
that this e�ciency is remarkably robust with respect to
even catastrophic levels of network damage. This finding
demonstrates that complex networks have the optimal
structure, allowing for routing with minimal overhead
approaching its theoretical lower bounds, a notoriously
di�cult longstanding problem in routing theory, proven
unsolvable for general graphs [20].

II. HYPERBOLIC GEOMETRY

In this section we review the basic facts about hyper-
bolic geometry. More detailed accounts can be found
in [21–27].
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curvature are di�cult to envisage because they cannot be
isometrically embedded into any Euclidean space. The
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have more “space” than the latter.

Because of the fundamental di�culties in represent-
ing spaces of constant negative curvature as subsets of
Euclidean spaces, there are not one but many equivalent
models of hyperbolic spaces. Each model emphasizes dif-
ferent aspects of hyperbolic geometry, but no model si-
multaneously represents all of its properties. In special
relativity, for example, the hyperboloid model is com-
monly used, where the hyperbolic space is represented
by a hyperboloid. Its two di↵erent projections to disks
orthogonal to the main axis of the hyperboloid yield
the Klein and Poincaré unit disk models. In the lat-
ter model, the whole infinite hyperbolic plane H2, i.e.,
the two-dimensional hyperbolic space of constant curva-
ture �1, is represented by the interior of the Euclidean
disk of radius 1, see Fig. 1. The boundary of the disk,
i.e., the circle S1, is not a part of the hyperbolic plane,
but represents its infinitely remote points, called bound-
ary at infinity @H2. Any symmetry transformation on
H2 translates to a symmetry on @H2, and vice versa, a
cornerstone of the anti-de Sitter space/conformal field
theory correspondence [8–10], where quantum gravity on
an anti-de Sitter space is equivalent to a quantum field
theory without gravity on the conformal boundary of the
space. Hyperbolic geodesic lines in the Poincaré model,
i.e., shortest paths between two points at the boundary,
are disk diameters and arcs of Euclidean circles intersect-
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(a) Intermediate embedding after 20 epochs (b) Embedding after convergence

Figure 2: Two-dimensional Poincaré embeddings of transitive closure of the WORDNET mammals
subtree. Ground-truth is-a relations of the original WORDNET tree are indicated via blue edges. A
Poincaré embedding with d = 5 achieves mean rank 1.26 and MAP 0.927 on this subtree.

the embedding space which could lead to reduced overfitting on data with a clear latent hierarchy.
Additionally, Figure 2 shows a visualization of a two-dimensional Poincaré embedding. For the
purpose of clarity, this embedding has been trained only on the mammals subtree of WORDNET.

4.2 Network Embeddings

Next, we evaluated the performance of Poincaré embeddings for modeling complex networks. Since
edges in such networks can often be explained via latent hierarchies over their nodes [9], we are
interested in the benefits of Poincaré embeddings in terms representation size and generalization
performance. We performed our experiments on four commonly used social networks, i.e, ASTROPH,
CONDMAT, GRQC, and HEPPH. These networks represent scientific collaborations such that there
exists an undirected edge between two persons if they co-authored a paper. For these networks, we
model the probability of an edge as proposed by Krioukov et al. [19] via the Fermi-Dirac distribution

P ((u, v) = 1 | ⇥) =

1

e

(d(u,v)�r)/t
+ 1

(6)

where r, t > 0 are hyperparameters. Here, r corresponds to the radius around each point u such that
points within this radius are likely to have an edge with u. The parameter t specifies the steepness of
the logistic function and influences both average clustering as well as the degree distribution [19].
We use the cross-entropy loss to learn the embeddings and sample negatives as in Section 4.1.

For evaluation, we split each dataset randomly into train, validation, and test set. The hyperparameters
r and t were tuned for each method on the validation set. Table 2 lists the MAP score of Poincaré and
Euclidean embeddings on the test set for the hyperparameters with the best validation score. Addi-
tionally, we also list the reconstruction performance without missing data. Translational embeddings
are not applicable to these datasets as they consist of undirected edges. It can be seen that Poincaré
embeddings perform again very well on these datasets and – especially in the low-dimensional regime
– outperform Euclidean embeddings.

4.3 Lexical Entailment

An interesting aspect of Poincaré embeddings is that they allow us to make graded assertions about
hierarchical relationships, as hierarchies are represented in a continuous space. We test this property
on HYPERLEX [37], which is a gold standard resource for evaluating how well semantic models
capture graded lexical entailment by quantifying to what degree X is a type of Y via ratings on a
scale of [0, 10]. Using the noun part of HYPERLEX, which consists of 2163 rated noun pairs, we
then evaluated how well Poincaré embeddings reflect these graded assertions. For this purpose, we
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Fig. 1. Common tree visualization techniques. From left-to-right: rooted tree, radial tree, balloon tree, and treemap layout.

overview of methods that can be used to display adjacency edges on
top of a tree visualization. Current methods for aggregating edges are
mentioned as well.

2.1 Tree Visualization Techniques

One of the most well-known tree visualizations is the rooted tree de-
picted in figure 1 [2, 15, 24]. The rooted tree is an example of a tree
visualization based on the intuitive node-link representation: the rela-
tionship between parent and child nodes is depicted by means of lines
that connect the nodes. The top-down layout positions child nodes be-
low their respective parent nodes and is the most common rooted tree
layout; a variation on this is the left-to-right layout. The radial layout
shown in figure 1 is another example of a node-link representation. In
this layout, nodes are placed on concentric circles according to their
depth in the tree [2, 7, 15]. The balloon layout shown in figure 1 is
a node-link representation in which sibling subtrees are included in
circles attached to the parent node [15].

Although radial and balloon layout techniques utilize the available
space somewhat more efficiently than rooted layout techniques, node-
link representations do not make optimal use of the available space in
general. The treemap layout shown in figure 1 is a space-filling layout
technique that displays a tree structure by means of enclosure, which
makes it an ideal technique for displaying large trees [27].

However, using enclosure to display the tree structure makes it more
difficult for viewers to perceive the hierarchical relationship between
nodes. Furthermore, node-link representations can be made more
space-efficient by using a focus+context (fisheye) technique; an exam-
ple is the layout of a tree on a hyperbolic plane which is subsequently
mapped onto a circular display region [18].

Visualization techniques that combine node-link representations
and enclosure to offer a trade-off between an intuitive display and ef-
ficient space usage for displaying large trees exist as well. Examples
are elastic hierarchies [32], SHriMP views [28], and space-optimized
tree visualization [21].

Finally, 3D visualization techniques provide another way of achiev-
ing a more efficient use of space, although occlusion problems usually
occur as a result of projecting 3D geometry onto a 2D screen. This
makes interaction techniques – particularly options for changing the
viewpoint – an essential part of these visualization techniques. Exam-
ples of 3D tree visualization techniques are cone trees [26] and H3, a
3D hyperbolic visualization [19].

2.2 Displaying Adjacency Relations

As mentioned earlier, simply adding adjacency edges to a tree visual-
ization in a straightforward way quickly leads to visual clutter if a large
number of edges is visualized (figure 2a). Fekete et al. [10] present a
technique that displays the hierarchical structure as a treemap and the
adjacency edges as curved links. The links are depicted as quadratic
Bézier curves that show direction using curvature without requiring an
explicit arrow. However, figure 2b shows that this technique suffers
from visual clutter as well when many links are visualized. SHriMP
views also use lines and curves added in a straightforward way for vi-
sualizing adjacency relations [28]. The 3D hyperbolic visualization

H3 mentioned in section 1 also supports showing or hiding adjacency
edges (added in a straightforward way) for a selected node or subtree
[19].

Methods for drawing clustered graphs, which are graphs with re-
cursive clustering structures over the vertices, are presented by Eades
et al. [8, 11]. Furthermore, Kaufmann et al. provide a more general
survey on drawing clusters (and hierarchies) [16]. In a sense, clustered
graphs are similar to compound graphs in that they contain a hierarchi-
cal component as a result of their recursive clustering structure as well
as non-hierarchical connections between the vertices of said clusters.
However, the drawing of clustered graphs as presented by Eades et al.
cannot be used as a method for drawing adjacency relations in con-
junction with existing tree visualization techniques, since the layouts
provided by their methods are fixed.

A similar remark holds for the use of force-directed algorithms for
the layout of compound graphs, like the method presented by Dogru-
soz et al. [6]. Issues with regard to computational complexity and
layout stability have also been associated with force-directed methods
[15]. However, these issues have recently been treated by various ap-
proaches [14, 17]. Most of these approaches also use a deterministic
model to prevent the highly unpredictable layouts that were often pro-
duced by previous force-directed methods.

Another method for drawing compound graphs that originated in
the graph drawing community is described by Sugiyama et al. [29].
In this method and its variations, nodes are drawn as rectangles, in-
clusion edges by the geometric inclusion among the rectangles, and
adjacency edges by polylines connecting them [4, 23, 29]. Although
this approach works fine for small compound digraphs as depicted in
figure 2c, it does not scale very well for compound graphs containing
a large hierarchy due to the inefficient usage of space.

A similar remark holds for ArcTrees as depicted in figure 2d, a
hierarchical view derived from traditional treemaps that is augmented
with arcs to depict adjacency relations [20]. This is a result of the fact
that ArcTrees were primarily designed as an informative interactive
tool for viewing documents and one of the requirements was to use as
little screen space as possible because the majority of the space will be
needed for the document itself.

Matrix views as depicted in figure 2e can be used as an alternative to
node-link- and enclosure-based representations for showing adjacency
relations between entities. The hierarchy is displayed along the axes
of the matrix and adjacency relations are shown within the matrix as
shaded cells [30, 33]. Matrix views present a stable and clean layout
of the adjacency relations, but they are less intuitive than node-link-
and enclosure-based representations [13, 30].

2.3 Edge Aggregation Techniques

Existing techniques that are related to edge aggregation are confluent
graph drawing [5, 9] and flow map layouts [22].

Confluent graph drawing is a technique for visualizing non-planar
graphs in a planar way by allowing groups of edges to be merged and
drawn together [5, 9]. However, not every graph is confluently draw-
able and in general, it appears difficult to quickly determine whether
or not a graph can be drawn confluently.
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Fig. 2. Displaying adjacency relations using existing methods. A call graph visualized on top of the associated source code tree using (a) color-
coded directed straight edges and (b) curved link edges (caller = green, callee = red); (c) standard compound digraph drawing; (d) ArcTrees for
visualizing relations in hierarchical data; (e) a matrix view for showing relations between entities. (a) and (b) suffer from visual clutter, (c) and (d)
furthermore suffer from the problem that they do not scale well for compound graphs containing a large hierarchy, and (e) is less intuitive than
node-link- and enclosure-based representations.

Flow map layouts use hierarchical, binary clustering on a set of
nodes, positions, and flow data to route edges [22]. As mentioned by
Phan et al. [22], the biggest drawback is that all edge splits are binary;
binary splits introduce too many extra routing nodes and lead to clutter
if there are too many nodes in a small area.

3 HIERARCHICAL EDGE BUNDLES

This section provides a detailed description of our technique. Sec-
tion 3.1 describes the basic idea behind hierarchical edge bundles, fol-
lowed by section 3.2, in which the principles mentioned in section 3.1
are described in more detail. Additional design decisions for improv-
ing the layout are mentioned here as well. Finally, in section 3.3, de-
tails regarding the actual rendering of the bundles are discussed that
further improve the final visualization.

3.1 Principle

Since we want our approach to be usable in conjunction with existing
tree visualization techniques, we propose to use the layout provided
by a tree visualization as a guide for bundling the adjacency edges.
Figure 3 illustrates how this is done by using a balloon tree layout as an
example. The approach is to use the path along the hierarchy between
two nodes having an adjacency relation as the control polygon of a
spline curve; the resulting curve is subsequently used to visualize the
relation. The control points Pi that make up the control polygon are
the points along the hierarchy from PStart through LCA(PStart ,PEnd) to
PEnd , where LCA(PStart ,PEnd) is the least common ancestor of PStart

and PEnd (see figure 3).

Fig. 3. Bundling adjacency edges by using the available hierarchy. (a)
Straight line connection between P0 and P4; (b) path along the hierarchy
between P0 and P4; (c) spline curve depicting the connection between
P0 and P4 by using the path from (b) as the control polygon.

If this approach is used directly for bundling adjacency edges, am-
biguity problems as depicted in figure 4a may arise. These problems
can be reduced by diminishing the bundling strength. The bundling
strength is controlled by a parameter β , β ∈ [0,1], that effectively
controls the amount of bundling by straightening the spline curve. Fig-
ure 4d shows the effect of this parameter and figure 4e illustrates how
this can be used to resolve ambiguity problems.

Fig. 4. Resolving bundling ambiguity. The bundle in (a) might contain
each edge depicted in (b). (c) and (d) show how different values of β
(red = 1, green = 2

3 , and blue = 1
3 ) can be used to alter the shape of spline

curves. As shown in (e), a fairly high bundling strength (β = 0.8) can be
chosen to retain visual bundles while still resolving ambiguity.

3.2 Spline Models

Different spline models were investigated for visualizing the curves.
We used weighted as well as non-weighted Bézier, B-spline, and Beta-
spline curves [1] of different degrees and we also investigated hybrid
approaches in which different spline curves were blended together us-
ing a weighted blending model.

Bézier curves lack the local control necessary to produce coherent
and distinct bundles. Different combinations of the additional bias
and tension parameters provided by Beta-splines did not result in bet-
ter bundling behavior when compared to traditional B-splines. Using
weighted instead of non-weighted B-splines did not readily improve
the bundling either. We settled on a piecewise cubic B-spline repre-
sentation, since this representation provided the amount of local con-
trol necessary for producing coherent and distinct bundles while keep-
ing the degree – and with it the computational complexity – low. An
open uniform knot vector of order 4 (degree = 3) which has degree−1
equal-valued knots at each end is employed to make the cubic B-spline
interpolate its start and end points. The degree is automatically re-
duced to 2 or 1 if the number of control points is 3 or 2, respectively,
since it is required that the degree is lower than the number of control
points.
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We used weighted as well as non-weighted Bézier, B-spline, and Beta-
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approaches in which different spline curves were blended together us-
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and distinct bundles. Different combinations of the additional bias
and tension parameters provided by Beta-splines did not result in bet-
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duced to 2 or 1 if the number of control points is 3 or 2, respectively,
since it is required that the degree is lower than the number of control
points.
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Fig. 2. Displaying adjacency relations using existing methods. A call graph visualized on top of the associated source code tree using (a) color-
coded directed straight edges and (b) curved link edges (caller = green, callee = red); (c) standard compound digraph drawing; (d) ArcTrees for
visualizing relations in hierarchical data; (e) a matrix view for showing relations between entities. (a) and (b) suffer from visual clutter, (c) and (d)
furthermore suffer from the problem that they do not scale well for compound graphs containing a large hierarchy, and (e) is less intuitive than
node-link- and enclosure-based representations.
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tails regarding the actual rendering of the bundles are discussed that
further improve the final visualization.

3.1 Principle

Since we want our approach to be usable in conjunction with existing
tree visualization techniques, we propose to use the layout provided
by a tree visualization as a guide for bundling the adjacency edges.
Figure 3 illustrates how this is done by using a balloon tree layout as an
example. The approach is to use the path along the hierarchy between
two nodes having an adjacency relation as the control polygon of a
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P0 and P4 by using the path from (b) as the control polygon.
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sentation, since this representation provided the amount of local con-
trol necessary for producing coherent and distinct bundles while keep-
ing the degree – and with it the computational complexity – low. An
open uniform knot vector of order 4 (degree = 3) which has degree−1
equal-valued knots at each end is employed to make the cubic B-spline
interpolate its start and end points. The degree is automatically re-
duced to 2 or 1 if the number of control points is 3 or 2, respectively,
since it is required that the degree is lower than the number of control
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Fig. 9. Using OpenGL’s EXT blend minmax extension. (a) and (b) show normal alpha blending on a white and black background, respectively;
(c) and (d) show the usage of standard MIN EXT (minimum) and MAX EXT (maximum) blending, respectively. An individual curve within the bundle
having an opposite direction can easily be discerned; (e) shows a transparency mask generated using normal alpha blending, which can be
combined with the results depicted in (c) and (d); (f) and (g) show how this provides these results with additional levels of opacity (as is the case
with standard alpha blending as depicted in (a) and (b)). The transparency mask furthermore allows them to be combined with other background
colors than black and white. This combines the benefits of normal alpha blending and standard MIN EXT and MAX EXT blending.

Fig. 10. Alpha blending helps to distinguish individual curves or sub-
bundles within a bundle. (a) Alpha blending disabled; (b) alpha blending
enabled.

An interesting variation on standard alpha blending is provided
by the EXT blend minmax extension available in OpenGL 1.2 and
higher. This extension can return the minimum or the maximum of two
colors (source and destination) on a per-color-channel basis. In case of
bundles that are mainly comprised of curves having a similar direction,
these blending modes can be used to spot individual curves within the
bundle having an opposite direction. Moreover, the blending modes
are commutative, resulting in identical visualizations regardless of the
order in which curves are drawn. Figure 9 shows an example of using
the extension.

4 RESULTS

The examples shown in this section are visualizations of a hierarchi-
cally organized software system and its associated call graph. The
software is part of a medical scanner and was provided by Philips
Medical Systems Eindhoven. Three hierarchy levels – layers, units,
and modules – consisting of 284 nodes are used together with the as-
sociated call graph for the elements at the lowest level of the hierarchy,
i.e., 1,011 adjacency relations representing module-to-module calls.
Figures 2a and 11 show non-bundled visualizations using a balloon,
radial, and squarified treemap layout; figures 13 and 15 show the bun-
dled versions. Figure 12 depicts how the radial visualization shown in
figure 13 was generated.

The non-bundled visualizations mainly show hot spots; the actual
connectivity information is more difficult to discern due to visual clut-
ter. Figures 13 and 15 show how bundling reduces visual clutter, mak-
ing it easier to perceive the actual connections. The bundled visual-
izations also show relations between sparsely connected systems more
clearly (visible within the encircled regions); these are almost com-
pletely obscured in the non-bundled versions.

Fig. 11. A software system and its associated call graph (caller = green,
callee = red). (a) and (b) show the system without bundling using a radial
and a squarified treemap layout (node labels disabled), respectively. (a)
and (b) mainly show hot spots; the actual connectivity information is
more difficult to discern due to visual clutter.

Fig. 12. Radial layout construction. (a) A radial tree layout is used for
the inner circle and subsequently mirrored to the outside; (b) the inner
layout is hidden and its structure is used to guide the adjacency edges.
An icicle plot based on the mirrored layout is used to show the hierarchy.

4.1 User Feedback

We organized informal user studies to demonstrate our application and
the resulting visualizations. Participants from academia and indus-
try examined the Philips Medical Systems software by interactively
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Fig. 13. A software system and its associated call graph (caller = green, callee = red). (a) and (b) show the system with bundling strength β = 0.85
using a balloon layout (node labels disabled) and a radial layout, respectively. Bundling reduces visual clutter, making it easier to perceive the
actual connections than when compared to the non-bundled versions (figures 2a and 11a). Bundled visualizations also show relations between
sparsely connected systems more clearly (encircled regions); these are almost completely obscured in the non-bundled versions. The encircled
regions highlight identical parts of the system for (a), (b), and figure 15.

Fig. 14. Using the bundling strength β to provide a trade-off between low-level and high-level views of the adjacency relations. The value of β
increases from left-to-right; low values mainly provide low-level, node-to-node connectivity information, whereas high values provide high-level
information as well by implicit visualization of adjacency edges between parent nodes that are the result of explicit adjacency edges between their
respective child nodes.

changing the bundling strength β and by switching between differ-
ent tree layouts. The participants from academia were our fellow re-
searchers, PhD students and MSc students from the Computer Science
department of the Technische Universiteit Eindhoven. They all had ex-
perience with either software development, software visualization, or
information visualization in general. Participants from industry were
representatives of the Software Improvement Group (SIG) in Amster-
dam, which delivers insight in the structure and technical quality of
software portfolios, and representatives of FEI Company Eindhoven,
which produces software to operate with FEI’s range of electron mi-
croscopes.

The majority of the participants regarded the technique as useful
for quickly gaining insight in the adjacency relations present in hier-
archically organized systems. In general, the visualizations were also
regarded as being aesthetically pleasing. SIG and FEI Company Eind-
hoven are currently supporting further development by providing us
with additional data sets and feedback regarding the resulting visual-
izations.

More specifically, most of the participants particularly valued the
fact that relations between items at low levels of the hierarchy were
automatically lifted to implicit relations between items at higher lev-
els by means of bundles. This quickly gave them an impression of the
high-level connectivity information while still being able to inspect
the low-level relations that were responsible for the bundles by inter-
actively manipulating the bundling strength.

This is illustrated in figure 14, which shows visualizations using
different values for the bundling strength β . Low values result in vi-
sualizations that mainly provide low-level, node-to-node connectivity
information. High values result in visualizations that provide high-
level information as well by implicit visualization of adjacency edges
between parent nodes that are the result of explicit adjacency edges
between their respective child nodes.

Another aspect that was commented on was how the bundles gave
an impression of the hierarchical organization of the data as well,
thereby strengthening the visualization of the hierarchy. More specif-
ically, a thick bundle shows the presence of two elements at a fairly
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network described by Adamic and 
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the 2004 US Election”. The layout is 

determined using graph-tool’s 
implementation of hierarchal edge 

bundles. The color scheme is the same as 
in the original paper, i.e. each node 

corresponds to a blog url and the colors 
reflect political orientation, red for 

conservative, and blue for liberal. Orange 
edges go from liberal blogs to 

conservative blogs, and purple ones 
from conservative to liberal (cf fig. 1 in 
Adamic and Glance). All 1,490 nodes 

and 19,090 edges are drawn.""
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between the nodes represent a value stream in the supply
chain.

We will first construct an asymmetric adjacency matrix
that reflects the structure of such a directed graph (i.e., a
non-diagonal entry aij is the number of arcs from node
i to node j ; see refs [24–26] for a discussion about the
differences between node-link diagrams (e.g., Fig. 2) and
matrix-based representation):

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 0 0 0 1 0
0 1 0 0 0 0 0 1
0 0 1 0 0 0 1 0
1 0 0 1 0 0 1 0
0 1 0 1 1 0 0 1
0 1 0 0 1 1 0 1
0 0 1 0 0 0 1 0
0 1 0 0 0 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Another way to present the same structure is by using
a double-entry table with node labels, where the positive
elements have been shaded and formatted differently for
better visual perception (Table 1).

Inspired by Czekanowski [27] and Bertin [28], it is often
reasonable to present the matrix with a graphical plot, where
numerical values are color coded. With binary data, the
most typical way is to use filled and empty cells to denote
‘ones’ and ‘zeros’, respectively. Using such an approach,
we can visualize the above structure as presented in Fig. 3.

Table 1. Double-entry table of the example dataset.

01 02 03 04 05 06 07 08

01 1 0 1 0 0 0 1 0

02 0 1 0 0 0 0 0 1
03 0 0 1 0 0 0 1 0

04 1 0 0 1 0 0 1 0

05 0 1 0 1 1 0 0 1
06 0 1 0 0 1 1 0 1
07 0 0 1 0 0 0 1 0

08 0 1 0 0 0 0 0 1

Fig. 3 A graphical ‘Bertin’ plot for the example dataset.

From such plain matrices, tables and plots, it is still
rather complicated to identify the underlying relationships
in the data, find patterns and an overall trend. Objects in
such an adjacency matrix are ordered arbitrarily, typically
in the order of data acquisition/generation, or just sorted
alphabetically by labels or names. Changing the order of
rows and columns, therefore, does not change the structure:
there are n! (or n!m! in case of a two-mode matrix)
permutations of the same matrix that will explicitly reflect
the identical structure of the system under observation. The
goal of seriation is to find such a permutation, i.e., to reorder
the objects from the same mode in a sequence so that
it best reveals regularity and patterning among the whole
series. This does not, by any means, exclude the chance
that data acquisition or alphabetical ordering actually lead
to structurally best ordering, but it should never be assumed
a priori. We can look at this also from the perspective
of a single element (cell), the position of which can be
changed arbitrarily with the constraint that it must always
be moved together with the whole row or column—making
it somewhat similar to the classical game of Rubik’s cube.
An example of the seriation procedure is demonstrated in
Fig. 4.

Clearly, from the right plot of Fig. 4, the underlying
structure and relationships can be far more easily per-
ceived. However, this is exactly where the challenge of
this problem is hidden—how to develop algorithms to per-
form seriation without exhaustive search of all permutations
and how to evaluate the goodness of the result. The new
order for rows and columns on the right plot of Fig. 4

Fig. 4 An example of the seriation procedure.
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There  is  a  sort  of  duality  between  the  two  forms:  nodes 
correspond  to  points  in  node-link  diagrams,  but  to  line 
segments  (rows  and  columns)  in  matrices,  and,  conversely, 
edges correspond to line segments in node-link diagrams, but to 
points (intersections of rows and columns) in matrices.
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between the nodes represent a value stream in the supply
chain.

We will first construct an asymmetric adjacency matrix
that reflects the structure of such a directed graph (i.e., a
non-diagonal entry aij is the number of arcs from node
i to node j ; see refs [24–26] for a discussion about the
differences between node-link diagrams (e.g., Fig. 2) and
matrix-based representation):

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 0 0 0 1 0
0 1 0 0 0 0 0 1
0 0 1 0 0 0 1 0
1 0 0 1 0 0 1 0
0 1 0 1 1 0 0 1
0 1 0 0 1 1 0 1
0 0 1 0 0 0 1 0
0 1 0 0 0 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Another way to present the same structure is by using
a double-entry table with node labels, where the positive

elements have been shaded and formatted differently for

better visual perception (Table 1).
Inspired by Czekanowski [27] and Bertin [28], it is often

reasonable to present the matrix with a graphical plot, where
numerical values are color coded. With binary data, the

most typical way is to use filled and empty cells to denote

‘ones’ and ‘zeros’, respectively. Using such an approach,
we can visualize the above structure as presented in Fig. 3.

Table 1. Double-entry table of the example dataset.

01 02 03 04 05 06 07 08

01 1 0 1 0 0 0 1 0

02 0 1 0 0 0 0 0 1
03 0 0 1 0 0 0 1 0

04 1 0 0 1 0 0 1 0

05 0 1 0 1 1 0 0 1
06 0 1 0 0 1 1 0 1
07 0 0 1 0 0 0 1 0

08 0 1 0 0 0 0 0 1

Fig. 3 A graphical ‘Bertin’ plot for the example dataset.

From such plain matrices, tables and plots, it is still
rather complicated to identify the underlying relationships
in the data, find patterns and an overall trend. Objects in
such an adjacency matrix are ordered arbitrarily, typically
in the order of data acquisition/generation, or just sorted
alphabetically by labels or names. Changing the order of
rows and columns, therefore, does not change the structure:
there are n! (or n!m! in case of a two-mode matrix)
permutations of the same matrix that will explicitly reflect
the identical structure of the system under observation. The
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Fig. 5 Alternative permutations for the same dataset.

was reached manually by the author with a highly sub-
jective on-the-fly evaluation of the goodness using visual
perception. Actually, this is exactly how it was done in the
1960s and 1970s by a research group directed by a French
cartographer Jacques Bertin [7] (p. 47), who stated that,
with assistants and mechanical devices, ‘it only takes three
days to construct a matrix and three weeks to process and
interpret it more deeply’, which was hoped to become eas-
ier using computers. At the same time, several algorithms
for automatic seriation already existed, but a quick propa-
gation of such developments and results was restrained and
muted by the barriers of different scientific traditions and
disciplines.

An example of two valid alternative permutations found
for the investigated dataset is presented in Fig. 5. Those
results are achieved with algorithms called a bond energy
algorithm (BEA) [29,30] and ‘minus’ technique [31–35].
The former optimizes an objective function and the latter,
if we use the terminology proposed by Van Mechelen et al.
[36] for similar algorithms, does modeling at a procedural
level—a specific heuristical strategy is followed and an
overall loss or objective function to be optimized is not
implied.

One might notice that both of those matrices (Fig. 5)
have different orders for rows and columns. Although we
are dealing with one-mode data, such a treatment is reason-
able if the graph is directed and, therefore, the adjacency
matrix is asymmetric. Finding only a single permutation is
possible (as seen in Fig. 4) in such a scenario, but it could
result in less structured output due to the reordering restric-
tions and require some extra data processing (e.g., making
the adjacency matrix temporarily symmetric for the duration
of the seriation procedure).

Another challenging and focal question concerning the
problem of seriation is defining and evaluating which per-
mutation is the best. For the example presented as a graph
in Fig. 2 and as a Bertin plot in Fig. 3, we have already pro-
posed three (one on the right of Fig. 4 and two in Fig. 5)
relatively good and subjectively interesting permutations.
But which one of those opens up the natural inner structure,
patterns, regularity, and the overall trend the most? One
could subjectively argue that the manual reordering result

(Fig. 4, right) offers the best seamless structural transfor-
mation, or that the result of the minus technique (Fig. 5,
left) illustrates clearly the decomposition of the system and
identifies the bridging elements between the two groups.
The consensual seriation goal is to maximize the similar-
ity between neighboring objects. However, it still leaves
a lot of ambiguity and vagueness for the exact objective
function formulation due to virtually hundreds of ways to
define sameness and similarity.

In the following retrospective overview, the background,
goals and applications of seriation, and matrix reordering
methods in different disciplines will be presented.

2. AN HISTORICAL OVERVIEW

An interested reader of all related work on the topic
should probably start from the Organon collection of the
works by Aristotle (384 BC–322 BC), especially the Cat-
egories [an interesting discussion from the perspective of
classification and clustering has been published by Mirkin
[37] (Section 1.1)] and the Topics. However, in order to
keep the specific and incisive focus on the problem of
seriation, we will begin with the works of Petrie [38] and
Czekanowski [27]. Those works represent a recognized and
a systematic start of seriation and matrix permutation visu-
alization, respectively.

Even within the area of seriation, this overview clearly
cannot be an exhaustive one, but it should give a coherent
view of the related work on the problem and not overlap
existing reviews and survey papers. The main emphasis is
given to the motivation and the incentive to use seriation,
commenting on the developments and examples from the
perspective of the taxonomy developed by Carroll and
Arabie [23] and making suggestions of minor modifications
for implementation steps, where necessary, to make the
approaches compatible with others and cross-applicable.

Where possible, related contributions are categorized by
disciplines. This enables to highlight the domain-specific
motivations, peculiarities, and traits of character, which
could possibly have other interesting interpretations across
disciplines.

Most of the redundancy of research comes from calling
the same thing with different names and calling different
things with the same name. This also applies to seriation;
therefore, we also try to identify the common terminology
in different disciplines.

In addition, two overview sketches (Fig. 6a and b) have
been compiled to summarize the connectedness of related
work in different disciplines. Relations between research
groups and contributions in Fig. 6a are broadly defined as
combinations of implicit and explicit references in those
works, together with the author’s subjective judgment of
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Fig. 8 Bertin’s [7,28] example of matrix reordering.

to perform those datasets from the two subsequent mono-
graphs [7,28]. Bertin [7] (p. 31) considered the comfortable

limits of the proposed graphic information processing to be
120 × 120 with reorderable matrix, 500 × 100 with exper-
imental equipment, and 1000 × 30 with the ‘matrix-file’
approach, where one dimension (mode) is fixed to be non-

permutable.
Bertin’s work is highly recognized within the commu-

nities of human–computer interaction (HCI) and informa-
tion visualization, however, with the main emphasis not

on reorderable matrices, but fundamentals of visual per-
ception and graphic information processing. One of the
most cited recent applications and enhancement of Bertin’s
ideas of reorderable matrices and especially the ‘matrix-

file’ approach is the Table Lens [62], which incorporated
interactive elements for better usability together with the
general focus + context mantra of the information visual-
ization community.

Bertin [7] (p. 15) was convinced that a set of pie charts is
one of the most useless graphical constructions. However,
Friendly and Kwan [63] and Friendly [64] demonstrated
that combining matrix cell shading with small pie charts

to present symmetric correlation matrices can result an
interesting visualization. The idea of the correlogram or
corrgram was to use color and intensity of shading in the
lower triangle of a symmetric matrix and circle symbols in

the corresponding cells of the upper triangle.
Siirtola et al. have recently published, in the information

visualization community, several discussions on the inter-

action [65–67] and algorithmic [68,69] aspects of Bertin’s
reorderable matrices and developed a tool for combining

visualization of parallel coordinates with the reorderable
matrix [70]. Several interesting papers present experiments
and comparisons regarding the readability and interpreta-
tion of the matrix-based representation [25,71]. Mueller et
al [72] have extended the work of Ling [73] on visualizing
similarity matrices to large-scale graphs and evaluate the
interpretability of results from different one-mode vertex-
ordering algorithms, including sensitivity to the initial order
of rows and columns.

Berry et al. [74] proposed a new information retrieval
strategy for browsing hypertext documents by reorder-
ing and visualizing term-by-document matrices. Recently,
this kind of approach has become very common for
co-clustering research [20].

Chen et al. [75] most recently published a Handbook of
Data Visualization, with several chapters presenting discus-
sions and examples about matrix reordering and visualiza-
tion. It reflects, among others, his own contributions on
the generalized association plots [76,77], which was based
on the idea of visualizing the two-way one-mode matrix
after seriation, using different shading to represent the val-
ues of proximity. An interested reader is also referred to an
excellent review [78] presenting the background and history
of seriation and matrix reordering from the perspective of
graphical cluster heat maps.

2.3. Sociology and Sociometry

One of the first influential attempts in sociology to intro-
duce a rigorously measurable and new way of thinking
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strength between two nearest-neighbor elements is defined
as their product’. For any non-negative two-mode matrix
A, the ME is given by:

ME(A) = 1

2

i=M∑

i=1

j=N∑

j=1

αi,j [αi,j+1 + αi,j−1 + αi+1,j + αi−1,j]

(with the convention α0,j = αM+1,j = αi,0 = αi,N+1 = 0)
As noted by McCormick et al. [29,30] and Lenstra [158],

the given problem can be reduced into two separate opti-
mizations (one for finding the order for columns, the other
for rows; we have slightly modified the notation):

Let
∏

= {π(1), π(2), . . . , π(M)} denote all M! permu-
tations of (1,2,. . .,M) and # = {φ(1), φ(2), . . . , φ(N)},
respectively over all N ! permutations of (1, 2, . . . , N ) with
the conventions π(0) = π(M + 1) = αi,0 = 0 and φ(0) =
φ(N + 1) = α0,j = 0:

arg max∏ =
i=M∑

i=1

j=N∑

j=1

απ(i),j [απ(i−1),j + απ(i+1),j ]

arg max# =
i=M∑

i=1

j=N∑

j=1

αi,φ(j)[αi,φ(j−1) + αi,φ(j+1)]

Lenstra [158] pointed out that the BEA is equivalent to
the well-known TSP, but, actually, the interpretation of the
ME optimization as two TSPs was already shown earlier
by the original authors in the publicly available technical
report [30] (p. 82). Climer and Zhang [159] have recently
presented an approach for converting the matrix reordering
problem to one-mode TSP format with additional k dummy
cities for cluster boundary detection. The solution provided
by the TSP solver is used to rearrange the data matrix.
They have reported better results according to the criteria of
ME for the examples presented by McCormick et al. [29],
using the BEA. However, several authors [11,154,160] have
revisited the original algorithm, investigated its properties
in detail, and found that the BEA provides near-optimal
results in different settings and is not trying to fit any
specific structural pattern in the data; therefore, sometimes
outperforming even dedicated and less universal domain-
specific algorithms.

In addition to the BEA, the same group developed
another, less known algorithm—the moment ordering algo-
rithm [30,161]. Deutsch and Martin [161] consider the
algorithm as a tool ‘for analyzing arrays of data whose
underlying organization is known but which is hoped that
there is a single underlying variable, according to which
the rows and columns of the arrays can both be arranged
in meaningful one-dimensional orders’. Both of the algo-
rithms provide seriation in the data, but the latter searches
for a solution to position all the values along the diagonal.

Similarly to isolated methodological lineage exceptions
in other disciplines, several generic methods to reorder
objects and matrices were developed by Mullat [31–33] and
Vyhandu [34,35,162,163], which were initially mainly used
for survey data analysis, but later to most of the scientific
disciplines covered in previous sections. Those methods
and approach to matrix reordering were mainly influenced
by the contributions [29,161] classified under operations
research in this review. Mullat formalized a family of meta-
heuristics called the monotone systems [31–33] and it was
applied to matrix reordering problems by Vyhandu [35].
Vyhandu’s matrix reordering techniques can, similarly to
McCormick’s [29] BEA, reduce the problem into two sep-
arate tasks for reordering the rows and columns. Vyhandu
[34,35] demonstrated that a specific entity-to-set weight
(structural similarity) measure called conformity [162,164]
is favorable for such task. These methods were enhanced
and fine-tuned over three decades resulting a set of matrix
reordering tools supporting categorical data, several struc-
tural patterns (i.e., the result is not restricted to one spe-
cific structural pattern in the output, e.g., block diagonal or
checkerboard form), and higher-mode seriation [165–167].

Some recent publications and monographs covering ele-
ments from this branch of heuristics and methods include
[37,168] (Section 4.2.1), [169] (Section 3.5.4), as well as
application examples of text mining [170] and inventory
classification [171].

3. CONCLUSIONS

A representative variety of related work on seriation
problems was highlighted in the presented historical over-
view, where independent work in different disciplines has
corroborated the advantages of understanding structural
patterns in the system by reordering rows and columns
in matrices. The real benefit in such an interdisciplinary
overview is not about reinventions across the disciplines,
but about understanding the differences in order to share
methods, approaches, and technical results.

The concept of seriation and matrix reordering can work
toward attaching data mining together with the advantages
in information visualization and SNA, which emphasize
the importance of simultaneous consideration of global and
local patterns.

In the future, reordering the matrices should be a ubiq-
uitous and common practice for everybody inspecting any
data table. According to Bertin’s [7] emphasis, a matrix
or data table is never constructed conclusively, but recon-
structed until all relations which lie within it can be
perceived. However, seriation cannot be considered ubiqui-
tously usable, until implemented and shipped as a standard
tool in any spreadsheet and internet browser for enabling
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the given problem can be reduced into two separate opti-
mizations (one for finding the order for columns, the other
for rows; we have slightly modified the notation):

Let
∏

= {π(1), π(2), . . . , π(M)} denote all M! permu-
tations of (1,2,. . .,M) and # = {φ(1), φ(2), . . . , φ(N)},
respectively over all N ! permutations of (1, 2, . . . , N ) with
the conventions π(0) = π(M + 1) = αi,0 = 0 and φ(0) =
φ(N + 1) = α0,j = 0:

arg max∏ =
i=M∑

i=1

j=N∑

j=1

απ(i),j [απ(i−1),j + απ(i+1),j ]

arg max# =
i=M∑

i=1

j=N∑

j=1

αi,φ(j)[αi,φ(j−1) + αi,φ(j+1)]

Lenstra [158] pointed out that the BEA is equivalent to
the well-known TSP, but, actually, the interpretation of the
ME optimization as two TSPs was already shown earlier
by the original authors in the publicly available technical
report [30] (p. 82). Climer and Zhang [159] have recently
presented an approach for converting the matrix reordering
problem to one-mode TSP format with additional k dummy
cities for cluster boundary detection. The solution provided
by the TSP solver is used to rearrange the data matrix.
They have reported better results according to the criteria of
ME for the examples presented by McCormick et al. [29],
using the BEA. However, several authors [11,154,160] have
revisited the original algorithm, investigated its properties
in detail, and found that the BEA provides near-optimal
results in different settings and is not trying to fit any
specific structural pattern in the data; therefore, sometimes
outperforming even dedicated and less universal domain-
specific algorithms.

In addition to the BEA, the same group developed
another, less known algorithm—the moment ordering algo-
rithm [30,161]. Deutsch and Martin [161] consider the
algorithm as a tool ‘for analyzing arrays of data whose
underlying organization is known but which is hoped that
there is a single underlying variable, according to which
the rows and columns of the arrays can both be arranged
in meaningful one-dimensional orders’. Both of the algo-
rithms provide seriation in the data, but the latter searches
for a solution to position all the values along the diagonal.

Similarly to isolated methodological lineage exceptions
in other disciplines, several generic methods to reorder
objects and matrices were developed by Mullat [31–33] and
Vyhandu [34,35,162,163], which were initially mainly used
for survey data analysis, but later to most of the scientific
disciplines covered in previous sections. Those methods
and approach to matrix reordering were mainly influenced
by the contributions [29,161] classified under operations
research in this review. Mullat formalized a family of meta-
heuristics called the monotone systems [31–33] and it was
applied to matrix reordering problems by Vyhandu [35].
Vyhandu’s matrix reordering techniques can, similarly to
McCormick’s [29] BEA, reduce the problem into two sep-
arate tasks for reordering the rows and columns. Vyhandu
[34,35] demonstrated that a specific entity-to-set weight
(structural similarity) measure called conformity [162,164]
is favorable for such task. These methods were enhanced
and fine-tuned over three decades resulting a set of matrix
reordering tools supporting categorical data, several struc-
tural patterns (i.e., the result is not restricted to one spe-
cific structural pattern in the output, e.g., block diagonal or
checkerboard form), and higher-mode seriation [165–167].

Some recent publications and monographs covering ele-
ments from this branch of heuristics and methods include
[37,168] (Section 4.2.1), [169] (Section 3.5.4), as well as
application examples of text mining [170] and inventory
classification [171].

3. CONCLUSIONS

A representative variety of related work on seriation
problems was highlighted in the presented historical over-
view, where independent work in different disciplines has
corroborated the advantages of understanding structural
patterns in the system by reordering rows and columns
in matrices. The real benefit in such an interdisciplinary
overview is not about reinventions across the disciplines,
but about understanding the differences in order to share
methods, approaches, and technical results.

The concept of seriation and matrix reordering can work
toward attaching data mining together with the advantages
in information visualization and SNA, which emphasize
the importance of simultaneous consideration of global and
local patterns.

In the future, reordering the matrices should be a ubiq-
uitous and common practice for everybody inspecting any
data table. According to Bertin’s [7] emphasis, a matrix
or data table is never constructed conclusively, but recon-
structed until all relations which lie within it can be
perceived. However, seriation cannot be considered ubiqui-
tously usable, until implemented and shipped as a standard
tool in any spreadsheet and internet browser for enabling
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Figure 1 Two visualizations of the same undirected graph containing 50 vertices and 400 edges. The node-link diagram (A) is
computed using the ‘neato’ program and the matrix representation (B) is computed using our VisAdj program.
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comparing the two representations in order to show their
respective advantages with regard to a set of generic
analysis tasks. We elaborate on our previous work8

presented at the infovis symposium and provide addi-
tional statistics via multiple regression analysis along
with a more in-depth interpretation of the collected
results.

The matrix-based visualization of graphs
The matrix-based visualization of graphs (Figure 1B) relies
from a formal standpoint on the potential representation
of a graph via its boolean-valued connectivity matrix
where rows and columns represent the vertices of the
graph. Although conventions may vary for directed
graphs, columns and rows generally represent the origin
of edges and their end point vertices, respectively. When
two vertices are connected, the cell at the intersection of
the corresponding row and column contains the value
‘true’. Otherwise, it takes on the value ‘false’. Boolean
values may be replaced with valued attributes associated
with the edges that can provide a more informative
visualization.
The matrix-based representation of graphs offers an

interesting alternative to the traditional node-link dia-
grams. In,9 Bertin shows that it is possible to reveal the
underlying structure of a network represented by a matrix
through successive permutations of its rows and col-
umns. In,10 the authors visualize the load distribution of
a telecommunication network by using a matrix but their
effort aims mostly at improving the display of a node-link
representation such as displaying half-links or postpon-
ing the display of important links to minimize occlusion
problems. More recently, in,11 the authors implemented a
multi-scale matrix-based visualization that represents the
call graph between software components in a large
medical imagery application. In,12 we have shown that
a matrix-based representation can be used to effectively
grasp the structure of a co-activity graph and to assess the
activity taking place across time, whereas the equivalent
node-link representation was unusable. This work was
specifically applied to monitoring constraint-oriented
programs.

Comparison of representations
The comparison of two visualization techniques can only
be carried out for a set of tasks and a set of graphs. The list
of tasks that are useful or important with regard to graph
exploration seems potentially endless. For instance, this
fact can be easily illustrated by constructing a Website-
related graph and the associated list of tasks that one can
carry out or wish to carry out on such a graph. However,
for tractability reasons, we tackled the problem by
focusing on a set of most generic tasks of information
visualization, and we adapted them to the visualization
of graphs. We believe that the readability of a representa-
tion must be related to the user’s ability to answer some
relevant questions about the overview. As far as graphs
are concerned, some questions may bear on topological

considerations or topology-related attributes. The most
generic questions related to the topology of a graph –
that is, the ones independent of the semantics of data –
are related to its vertices, links, paths and sub-graphs. We
extracted from the ‘Glossary of graph theory’ entry of the
Wikipedia Free Encyclopedia a set of important concepts
and organized basic tasks related to them as follows:

Basic characteristics of vertices: One may be interested in
determining the number of vertices (their cardinality),
outliers, a given vertex (by its label), and the most
connected or least connected vertices.
Basic characteristics of paths: They include the number
of links, the existence of a common neighbor, the
existence of a path between two nodes, the shortest
path, the number of neighbors of a given node, loops
and critical paths.
Basic characteristics of subgraphs: One may be interested
in a given subgraph, all the vertices reachable from one
or several vertices (connected sets) or a group of
vertices strongly connected (clusters).

Therefore, comparing the readability of graph repre-
sentations should, in principle, take all these character-
istics into account in order to determine the tasks that are
more easily performed with a matrix-based representa-
tion and the ones for which it is more appropriate or
more reasonable to use a node-link representation. This
article presents a comparative evaluation of readability
performed on a subset of these generic tasks.

Readability of a graph representation
The readability of a graphic representation can be defined
as the relative ease with which the user finds the
information he is looking for. Put differently, the more
readable a representation, the faster the user executes the
task at hand and the less he makes mistakes. If the user
answers quickly and correctly, the representation is
considered very readable for the task. If, however, the
user needs a lot of time or if the answer he provides is
wrong, then the representation is not well-suited for that
task.
In our evaluation, we selected the following generic

tasks:

! Task 1: approximate estimation of the number of nodes
in the graph, referred to as ‘nodeCount’.

! Task 2: approximate estimation of the number of links
in the graph, referred to as ‘edgeCount’.

! Task 3: finding the most connected node, referred to as
‘mostConnected’.

! Task 4: finding a node given its label, referred to as
‘findNode’.

! Task 5: finding a link between two specified nodes,
referred to as ‘findLink’.

! Task 6: finding a common neighbor between two
specified nodes, referred to as ‘findNeighbor’.

! Task 7: finding a path between two nodes, referred to as
‘findPath’.
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Readability also depends on the specific graph in-
stances at hand, their familiarity to users, their meaning,
and the layout used to visualize them. In our evaluation,
we only compare random graphs which are meaningless
and equally unfamiliar to users and hence, we only focus
on abstract characteristics of graphs. We choose a popular
graph layout program called ‘neato’, part of the Graph-
Viz13 package to compute the node-link diagrams. It
could be argued that an alternative layout program might
provide a more readable layout according to our tasks.
This is certainly true for actual figures but we believe that
the overall trends would be similar when the size and
density of graphs increase.

Preliminary hypotheses
The traditional node-link representation suffers from link
overlapping – interfering with neighborhood finding and
link counting – and link length – interfering with
neighborhood finding. Moreover, some tasks involving
sequential search of graph elements, such as node finding
by name, are increasingly difficult when the number of
nodes becomes large since, in general, nodes are not laid
out in a predictive order. Hence, we expect the number of
nodes and the link density to greatly influence the
readability of this representation. We define the link
density d in a graph as d ¼

ffiffiffiffiffiffiffiffiffi

l=n2
p

, where l is the number
of links and n the number of nodes in the graph. This
value varies between 0 for a graph without any edge to 1
for a fully connected graph. In graph theory, the density
of a graph is usually taken as the ratio of the number of
edges by the number of vertices. Although topologically
meaningful, this definition is not scale invariant since
the number of potential edges increases in the square of
the number of vertices.

Predictions
The matrix-based representation has two main advan-
tages: it exhibits no overlapping and is orderable. We
therefore expect tasks involving node finding and link
finding to be carried out more easily. Counting nodes
should be equally difficult on both representations,
unless nodes become cluttered on node-link diagrams.
Counting links should be easier on matrices since no
occlusion interferes with the task. Also, finding the most
connected node should perform better on matrices for
dense graphs. In fact, in the context of node-link
diagrams, links starting or ending at a node are hard to
discriminate from links crossing the node.
On the other hand, when it comes to building a path

between two nodes, node-link diagrams should perform
better; matrix-based representations are more complex to
apprehend because nodes are represented twice (once on
both axes of the matrix), which forces the eye to move
from the row representing a vertex to its associated
column back and forth, unless a more appropriate
interaction is provided. Lastly, we believe that node-link
diagrams are suitable, and therefore preferable to the less
intuitive matrix representation for small-sized graphs.

Experimental setup

The data In order to test our hypotheses, we experi-
mented with graphs of three different sizes (20 vertices,
50 vertices and 100 vertices) with three different link
densities (0.2, 0.4 and 0.6) for each size, that is to say, a
total of nine different graphs (Table 1). In order to avoid
any bias introduced by some peculiarity of the chosen
data, we opted for random undirected graphs generated
by the random graph server located at the ISPT.14

Moreover, in order to eliminate any ambiguity with
regard to task 3, which consists in finding the most
connected node, we added an extra 10% of links to the
most connected node in these graphs. When several
nodes had initially the highest degree, one of them was
chosen at random and received an additional 10% of
links. The distribution of additional links was also done
at random.
The random graph generator we used labels the nodes

numerically according to the order of their creation
which, as such, makes task 1 amount to finding the
greatest numeric label. Consequently, we decided to
make this task more relevant by renaming the nodes
alphabetically (from A to T on the twenty-node graphs,
from A1 to F0 on the 50-node graphs, and from A1 to K0
on the 100-node graphs).

The population The population that performed the
evaluation consisted of post-graduate students and con-
firmed researchers in the fields of computer science. All
the subjects knew what a graph was. No further knowl-
edge of graph theory was required. The population
consisted of 36 subjects, all of whom had previously
seen a node-link representation of graphs. All the subjects
participated voluntarily to the evaluation.

The evaluation program We developed an evaluation
program that represents the selected graphs according to
both representation techniques. It then asks the user to
perform the tasks and records the time to answer.
In terms of interaction, our program provides picking

and selection mechanisms. On both visualizations, when
the mouse goes over a node, it is highlighted in green as
well as its incident links; nodes can also be selected
through direct pointing, in which case they are high-
lighted in red as well as their incident links. Likewise,
when the mouse goes over a link, it is highlighted in
green as well as its endpoints (Figure 1). These interactive
enhancements were added to help users focus on graph

Table 1 The nine types of graphs used for our
experiment

Size\density 0.2 0.4 0.6

20 Graph 1 Graph 2 Graph 3
50 Graph 4 Graph 5 Graph 6
100 Graph 7 Graph 8 Graph 9
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count in either case. This can be explained by the fact
that users really estimated the size of graphs without
resorting to an exact count; the complexity of many
node-link diagrams would deter them if they tried! This is
also a likely explanation of the favorable effect of density.
Figure 5 and the related equations suggest that the

readability of the node-link diagrams is strongly affected
by an interaction between density and size, while size has
no significant independent effect. The readability of
matrices is less influenced by the interaction between
size and density – although such interaction is observed –
and is not sensitive to size variation. On top of that,
matrices allow carrying out this task more quickly when

size and density are medium or large. Indeed, the dark
gray surface takes off for these values while the light gray
surface remains unchanged.

Estimation of the number of links (linkCount) Based on
Figure 6, the estimation of the number of links in the
graph seems relatively independent of size or link density
when these variables take medium or large values. On
Figure 6A (x-coordinates 2 and 4), there is a gap in answer
time between small and medium-sized graphs and, on
Figure 6B (x-coordinates 2 and 4), between sparse and
moderately dense graphs. However, there seems to be no
difference between the two techniques for any given size
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Figure 2 Percentage of correct answers by task and by size. Matrices appear in light gray, node-links in dark gray.
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Figure 1: Illustrating examples of the four main categories of visualization techniques to explicitly encode different types of
group structures within graph visualizations. (a) Visual node attributes—here color. (b) Juxtaposed—here using an attached
approach. (c) Superimposed—here using a contour approach. (d) Embedded—here using a hybrid approach.

Abstract
Graph visualizations encode relationships between objects. Abstracting the objects into group structures provides
an overview of the data. Groups can be disjoint or overlapping, and might be organized hierarchically. How-
ever, the underlying graph still needs to be represented for analyzing the data in more depth. This work surveys
research in visualizing group structures as part of graph diagrams. A particular focus is the explicit visual en-
coding of groups, rather than only using graph layout to implicitly indicate groups. We introduce a taxonomy of
visualization techniques structuring the field into four main categories: visual node attributes vary properties of
the node representation to encode the grouping, juxtaposed approaches use two separate visualizations, superim-
posed techniques work with two aligned visual layers, and embedded visualizations tightly integrate group and
graph representation. We discuss results from evaluations of those techniques as well as main areas of application.
Finally, we report future challenges based on interviews we conducted with leading researchers of the field.

Categories and Subject Descriptors (according to ACM CCS): H.5.2 [Information Interfaces and Presentation]: User
Interfaces—Graphical user interfaces (GUI)

1. Introduction

Graphs or networks are used to model relationships between
objects of any kind. When analyzing these graphs—in par-
ticular, if the size of the graph is non-trivial—we, however,
do not want to or cannot study each object and each rela-
tionship connecting two objects individually. We use visual-

ization to give us a meaningful overview of the graph struc-
ture, to highlight central objects, to show similar objects, and
to reveal outliers. The ability of a visualization to provide
these features largely depends on its efficiency to abstract
from individual objects into groups or clusters of objects.
For instance, applying a random arrangement of visual rep-

c� The Eurographics Association 2015.
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Table 3: Visualization techniques classified by our taxonomy of group visualizations and group structures. References are
marked with 1st (2nd) if the visualization approach is used as primary (secondary) visual mapping for the type of group structure.
Illustrating images are included only for primary visual mappings.

Group Structure Taxonomy

Disjoint flat Overlapping flat Disjoint hierarchical
Overl. hier.
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Eurographics Conference on Visualization (EuroVis) (2015) STAR – State of The Art Report
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The State of the Art in
Visualizing Group Structures in Graphs

Corinna Vehlow, Fabian Beck, and Daniel Weiskopf
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Figure 1: Illustrating examples of the four main categories of visualization techniques to explicitly encode different types of
group structures within graph visualizations. (a) Visual node attributes—here color. (b) Juxtaposed—here using an attached
approach. (c) Superimposed—here using a contour approach. (d) Embedded—here using a hybrid approach.

Abstract
Graph visualizations encode relationships between objects. Abstracting the objects into group structures provides
an overview of the data. Groups can be disjoint or overlapping, and might be organized hierarchically. How-
ever, the underlying graph still needs to be represented for analyzing the data in more depth. This work surveys
research in visualizing group structures as part of graph diagrams. A particular focus is the explicit visual en-
coding of groups, rather than only using graph layout to implicitly indicate groups. We introduce a taxonomy of
visualization techniques structuring the field into four main categories: visual node attributes vary properties of
the node representation to encode the grouping, juxtaposed approaches use two separate visualizations, superim-
posed techniques work with two aligned visual layers, and embedded visualizations tightly integrate group and
graph representation. We discuss results from evaluations of those techniques as well as main areas of application.
Finally, we report future challenges based on interviews we conducted with leading researchers of the field.

Categories and Subject Descriptors (according to ACM CCS): H.5.2 [Information Interfaces and Presentation]: User
Interfaces—Graphical user interfaces (GUI)

1. Introduction

Graphs or networks are used to model relationships between
objects of any kind. When analyzing these graphs—in par-
ticular, if the size of the graph is non-trivial—we, however,
do not want to or cannot study each object and each rela-
tionship connecting two objects individually. We use visual-

ization to give us a meaningful overview of the graph struc-
ture, to highlight central objects, to show similar objects, and
to reveal outliers. The ability of a visualization to provide
these features largely depends on its efficiency to abstract
from individual objects into groups or clusters of objects.
For instance, applying a random arrangement of visual rep-

c� The Eurographics Association 2015.
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Fig. 2. European Royal families (same as that of Fig. 4) depicted by a standard Node-Link representation using the “dot” program to compute the
layout [10]. Notice long edges and crossings.

not just consanguine trees (descendants and ancestors) but also the lat-
tice formed by conjugal relationships (marriages).

Visualizing a genealogical graph using a node-link diagram – ei-
ther from an Ore-graph or from a bipartite graph – usually involves
assigning a layer (i.e., a generation) to each individual and trying to
minimize the crossings between layers, as in Sugyiama et al.’s algo-
rithm [36]. But even with improved versions of this algorithm [10, 5],
large genealogies exhibit very long edges and too many crossings to
be suitable for exploration or presentation (Fig. 2). Genealogy systems
seldom implement these algorithms and usually resort to unpublished
heuristics to layout the graphs, all of which break on special cases
(e.g. cycles or multiple marriages on several generations). To solve
the problem, they rely on hand-editing the layout, which is impractical
for large genealogies.

Dual Trees [20], which are similar to Multi-Trees [9], extend the
hourglass chart by offsetting and connecting roots of ancestor and de-
scendant trees, with each root having an hourglass chart. This tech-
nique minimizes edge crossings but does not eliminate them, and it
still only shows a limited number of nodes on screen. To address this,
the authors proposed interaction techniques for expanding or collaps-
ing nodes and transitioning between subsets of the dual trees.

In short, all node-based approaches have serious drawbacks: they
do not scale well to large numbers of individuals, they cannot represent
large family lattices, they fail to highlight complex relationships (such
as polygamy), they do not show temporal attributes (like birth dates)
and finally they fail to convey larger context and distant relationships.

2.3.2 Line-Based Representations

Another approach to genealogy visualization represents individuals as
lines rather than nodes. For example Bertin [4] presents individuals as
line segments and families as points. Each segment has two points, one
connecting the individual to her parents, and the other to her children.
But multiple marriages are difficult to depict: they require duplicat-
ing the lines representing the person for each marriage. P-graphs [41]
use a similar representation, with the person’s gender indicated by the
line orientation (vertical or tilted) and additional notations on the line-
segments indicate gender and patriarchal succession. P-graphs are
often used for genealogy charts in anthropological literature, as the
directions of the lines form interesting patterns when examining inter-
marriages within a family or clan. Héran uses a similar representation
for aggregated populations [16] and argues that gender is the most
important feature to show in genealogical representations to clearly
distinguish between matriarchal and patriarchal marriage strategies.

Depictions representing individuals as lines are often used to con-
vey a sense of time. For example in [31] individuals are presented as
horizontal lines of the life spans of famous people from 1200 B.C to
1750 A.D. However, relationships between individuals are not shown.
Genelines [32] extend the timeline visualization by adding connec-
tor lines between married individuals and “hang” children from these
lines. R. Munroe [26] recently hand-crafted timelines of interactions
among movie characters, shown as lines of different color that con-
verge while characters are together. A similar visualization was auto-

mated and used in [30, 28] to indicate marriages, with children time-
lines “connecting” to both parental ones. Finally, Genograms in Geno-
Pro [12] extend the number of relations visualized: lines depicting
a marriage represent ordinal time; and more complex relationships
like divorce and re-marriage are depicted through special symbols that
overload the visual representation.

2.3.3 Tabular Representations

Finally, most Genealogy systems provide extensive ways to navigate
in large datasets by the means of tables: tables of individuals, tables
of marriages, tables of places, etc. However, tables alone are poor at
showing an overview of the relations between people and at supporting
navigation and exploration. They need to be coupled with clear and
scalable visualizations.

2.3.4 Structural Analysis

Some genealogy systems provide analysis tools, especially for the pur-
pose of kinship analysis. Ethnographers study the strategies adopted
by groups and build models of stable societies based on different kin-
ship systems. Therefore, they develop tools to check their models in
specific populations. The main characteristic of these models is based
on marriage patterns and ring structures. A ring structure is a cycle in
the non-oriented genealogy graph, closed by a marriage. For exam-
ple, the Bible genealogy shows that Mary and Joseph have a common
ancestor: King David. Therefore, there is a closed cycle starting at
King David, splitting in two descendant lines, one reaching Joseph,
the other one reaching Mary and closing at their marriage.

Several tools have been designed to perform this analysis; the most
recent, Puck [1], counts the different types of rings in the geneal-
ogy database, and provides algorithms to categorize individuals by
attribute and build simplified structural graphs. Puck provides sim-
ple graphing capabilities to show distributions or evolutions but relies
on Pajek [5] for its graph visualization and analysis capabilities. Puck
and Pajek are similar in the style of their interface: complex and fea-
ture rich. The communication between them requires good expertise,
which makes these tools challenging for historians and less computer-
educated users. Furthermore, these tools reveal structural properties
but the link to the actual individuals is usually lost.

2.4 Quilts

Researchers have advocated matrix-based representations as a scalable
alternative to node-link representations [13]. Recently, a variant called
Quilts was introduced [39], that can represent layered and “quasi”
layered graphs in a more compact way.

Figure 3 illustrates the original Quilts visualization. The left image
shows a node-link diagram of a directed graph where nodes have been
assigned a layer (a row). Most edges run between successive layers.
The right image shows the corresponding quilt: nodes are laid out in a
zigzagging pattern across the matrix diagonal, as opposed to being on
the matrix’s borders like in classical matrix representations. The nodes
from the top layer (in blue) are laid out horizontally and the nodes
from the second layer (in red) are laid out vertically. Links between
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Fig. 3. A node-link depiction of a small layered graph (left) and its quilt
depiction (right) [38].

the two layers are depicted as black dots, forming a sub-matrix. To the
right of the second (red) layer is the sub-matrix depicting relationships
between the second and the third layer (in green).

Problems arise when there are links between two non-successive
layers, i.e., skip links. For example, it can be seen from the left image
that two links go from the 1st to the 4th layer, and one from the 2nd
to the 4th layer. Since not all skipped links can be displayed position-
ally (e.g. 2nd to 4th layer), Quilts append skip-links to submatrices
and uses a color-coding scheme to refer to distant nodes. In Figure 3
for example, two colored dots have been added to the first (blue/red)
submatrix to show links from the 1st (blue) to the 4th (purple) layer.
Another colored dot has been added to the right to depict the link from
the 2nd (red) to the 4th (purple) layer. However, this solution is seri-
ously limited, as it can be difficult or impossible to find the matching
color of the destination node, especially in large graphs.

GeneaQuilts builds on Quilts, adapting them to bipartite layered
graphs: vertical layers all contain the same type of node (individuals
in a genealogy) and horizontal layers contain nodes of a different type
(nuclear families in a genealogy). Since links between horizontal and
vertical layers are not possible, we re-enable the positional coding of
skip links, overcoming Quilts’ weak point.

3 THE GENEAQUILTS SYSTEM

The GeneaQuilts system supports genealogy dataset files in several
formats including GEDCOM [37], and has four main visual compo-
nents (Fig. 4): a) a main visualization window, b) an overview win-
dow, c) a timeline and d) a Query panel. The interactions have been
designed to allow rapid navigation and exploration, while avoiding ex-
tensive interface components and menus.

3.1 The GeneaQuilts visualization

The main genealogy window (Fig. 4a) shows a detailed view of the
GeneaQuilts visualization. We explain the visualization on a simple
example, discuss its benefits, and provide key implementation details.

3.1.1 How to read GeneaQuilts

Figure 5 illustrates the visualization on a simple example. It shows
three lists of people, each of which is a generation of individuals. The
top-left generation is the oldest and the bottom-right one the youngest.
In front of each name is an icon indicating the person’s gender. The
three icons with an “F” are nuclear families. They are also organized
in generations and are laid out horizontally.

Black dots indicate relationships within families. Dots above a fam-
ily icon point to the parents and dots below point to the children (round
dots point to females and square dots point to males). Consider, for
example, the rightmost “F” icon in Figure 5: the round dot above
indicates Marge is the mother in this nuclear family and the square
dot indicates Homer is the father. The three dots below indicate they
have two daughters and a son. It is hence easy to focus on a nuclear
family/column (T2) and identify parents and siblings.

It is also possible to focus on individuals (T1). Dots to the right
of an individual reveal spouses and children, whereas dots to the left
show parents and siblings. In Figure 5, the dot to the left of Homer
points to a path to his two parents, and the dot to the left of Marge
points to a path to her two parents and her two sisters.

Fig. 4. The GeneaQuilts System showing part of the European Royal
families. It consists of (a) the main visualization, (b) an overview, (c) a
timeline and (d) a query and details panel.

Figure 1 contains a more comprehensive example and shows how
this representation is more compact than a full relational matrix, as
most of the content is close to the diagonal and each individual ap-
pears only once. Taking Zeus as an example (4th generation), it can
be also seen that multiple marriages are easily visualized, including
cross-generational ones (Zeus with Leda). Cross generational births
(skip links from families to individuals) are represented the same way.
As discussed before, the ability to represent skip-links positionally is
a significant improvement over the original Quilts technique. More-
over, we have removed unused grid areas in the matrix to make the
visualization more readable and compact than the original Quilts.

3.1.2 Layer Assignment

GeneaQuilts relies significantly on correct assignment of layers. For
example, it is not possible to display links from parents to children
in the same or a previous generation, so children must be assigned
to lower layers than their parents. We use the layer assignment algo-
rithm described by Gansner et al. [10] as implemented in the graph
layout program dot [11]. Since children cannot be their own ances-
tors, genealogical graphs will be acyclic, and the algorithm will always
place children at lower layers than parents. The algorithm also min-
imizes the summed length of all links, ensuring that the vertical lay-
out is as packed as possible. To order individuals and families within
each layer, we minimize link crossings using the “barycenter heuris-
tic” published by Siirtola & Mäkinen [35]. dot implements a slightly
improved version. In a quilt, this places connected items close to one

Fig. 5. GeneaQuilts Visualization of the Simpson Family.
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Fig. 1. The genealogy of Greek Gods depicted by GeneaQuilts (rotated 45o for better layout in this paper). Each F icon represents a
nuclear family composed of parents (black dots above the icon) and children (black dots below).

Abstract—GeneaQuilts is a new visualization technique for representing large genealogies of up to several thousand individuals. The
visualization takes the form of a diagonally-filled matrix, where rows are individuals and columns are nuclear families. After identifying
the major tasks performed in genealogical research and the limits of current software, we present an interactive genealogy exploration
system based on GeneaQuilts. The system includes an overview, a timeline, search and filtering components, and a new interaction
technique called Bring & Slide that allows fluid navigation in very large genealogies. We report on preliminary feedback from domain
experts and show how our system supports a number of their tasks.

Index Terms—Genealogy visualization, interaction.

1 INTRODUCTION

Genealogy, i.e., the study of family relationships, is an increasingly
popular activity pursued by millions of people, ranging from hob-
byists to professional researchers [23]. This is reflected in the large
number of commercial and free genealogical software packages avail-
able [12, 32, 25]. While most of these packages offer excellent sup-
port for building and maintaining genealogical databases, their support
for visualizing these databases is weak. The most widespread visual-
izations are based on node-link diagrams, which have been shown to
quickly become unreadable as graph size grows [13]. Considering that
genealogical databases built by individuals can easily reach thousands
of nodes, and those built by organizations tens of thousands, the need
for a more scalable visualization solution is clear.

We propose a solution based on a matrix representation, inspired
by the Quilts visualization for layered graphs [39, 38]. Quilts (see
Fig. 3) eliminate the confusing link crossings of node-link diagrams,
and display layered graphs in a more compact manner than traditional
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matrix representations. Our GeneaQuilts technique (Figure 1) maps
rows to individuals and columns to nuclear families, effectively map-
ping groups of individuals from the same generation to alternating
graph layers. We show how this approach allows us to benefit from
all the advantages of the original Quilt technique while avoiding its
drawbacks.

This article’s contribution is threefold: 1) we provide a list of ba-
sic genealogical tasks that can be of value to builders of genealogical
visualization systems; 2) we introduce a novel visualization technique
that can handle large genealogies that could not be depicted earlier
and 3) we introduce a novel topology-aware graph navigation tech-
nique called Bring & Slide that allows to quickly follow paths in large
genealogies. We have integrated our visualization and navigation tech-
nique into a genealogy exploration system that can handle complex
datasets and has been very positively received by domain experts.

2 BACKGROUND

In this section we explain the data structure of genealogical graphs,
discuss genealogical tasks, survey existing genealogy systems and
briefly describe the Quilts visualization technique we build upon.

2.1 Data Structures

Genealogies are directed graphs, usually acyclic. There are two stan-
dard data structures for genealogical graphs: Ore-graphs [29] and
bipartite graphs. Ore-graphs have individuals as vertices while di-
rected edges (arcs) represent parent-to-child relationships and undi-
rected edges represent marriages. Bipartite graphs have two types of
vertices: individuals and nuclear families – referring to a wife, hus-
band and their biological children. Directed edges map families to
their parents, and children to their family.
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Fig. 1. The genealogy of Greek Gods depicted by GeneaQuilts (rotated 45o for better layout in this paper). Each F icon represents a
nuclear family composed of parents (black dots above the icon) and children (black dots below).

Abstract—GeneaQuilts is a new visualization technique for representing large genealogies of up to several thousand individuals. The
visualization takes the form of a diagonally-filled matrix, where rows are individuals and columns are nuclear families. After identifying
the major tasks performed in genealogical research and the limits of current software, we present an interactive genealogy exploration
system based on GeneaQuilts. The system includes an overview, a timeline, search and filtering components, and a new interaction
technique called Bring & Slide that allows fluid navigation in very large genealogies. We report on preliminary feedback from domain
experts and show how our system supports a number of their tasks.

Index Terms—Genealogy visualization, interaction.

1 INTRODUCTION

Genealogy, i.e., the study of family relationships, is an increasingly
popular activity pursued by millions of people, ranging from hob-
byists to professional researchers [23]. This is reflected in the large
number of commercial and free genealogical software packages avail-
able [12, 32, 25]. While most of these packages offer excellent sup-
port for building and maintaining genealogical databases, their support
for visualizing these databases is weak. The most widespread visual-
izations are based on node-link diagrams, which have been shown to
quickly become unreadable as graph size grows [13]. Considering that
genealogical databases built by individuals can easily reach thousands
of nodes, and those built by organizations tens of thousands, the need
for a more scalable visualization solution is clear.

We propose a solution based on a matrix representation, inspired
by the Quilts visualization for layered graphs [39, 38]. Quilts (see
Fig. 3) eliminate the confusing link crossings of node-link diagrams,
and display layered graphs in a more compact manner than traditional
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matrix representations. Our GeneaQuilts technique (Figure 1) maps
rows to individuals and columns to nuclear families, effectively map-
ping groups of individuals from the same generation to alternating
graph layers. We show how this approach allows us to benefit from
all the advantages of the original Quilt technique while avoiding its
drawbacks.

This article’s contribution is threefold: 1) we provide a list of ba-
sic genealogical tasks that can be of value to builders of genealogical
visualization systems; 2) we introduce a novel visualization technique
that can handle large genealogies that could not be depicted earlier
and 3) we introduce a novel topology-aware graph navigation tech-
nique called Bring & Slide that allows to quickly follow paths in large
genealogies. We have integrated our visualization and navigation tech-
nique into a genealogy exploration system that can handle complex
datasets and has been very positively received by domain experts.

2 BACKGROUND

In this section we explain the data structure of genealogical graphs,
discuss genealogical tasks, survey existing genealogy systems and
briefly describe the Quilts visualization technique we build upon.

2.1 Data Structures

Genealogies are directed graphs, usually acyclic. There are two stan-
dard data structures for genealogical graphs: Ore-graphs [29] and
bipartite graphs. Ore-graphs have individuals as vertices while di-
rected edges (arcs) represent parent-to-child relationships and undi-
rected edges represent marriages. Bipartite graphs have two types of
vertices: individuals and nuclear families – referring to a wife, hus-
band and their biological children. Directed edges map families to
their parents, and children to their family.

a

b

Fig. 6. Multiple selections in the Bible. (a) Selecting Milcah’s bloodline
in red and her husband’s in blue reveals their common descendants, but
also a close common ancestor (Terah) shown by the two lines blended in
a dashed pattern. (b) The blending of these bloodlines in the overview.

another, and moves submatrix links toward the diagonal. Our layout
algorithm therefore translates a genealogy graph to the dot format,
runs the dot program to compute the layout as (X,Y) vertex positions,
and assigns generations according to the Y positions and orders in each
generation according to the X positions.

Using this method, it is easy to identify interesting families with
many children. Without any additional embellishment, this basic vi-
sualization can display complex relationships (T6) such as polygamy,
including group marriages of more than two parents in a nuclear fam-
ily/column or serial monogamy (membership in more than one nuclear
families/columns). Moreover, it is easy to identify cross-generation
marriages, as the resulting nuclear families tend to extend beyond the
bounds of the diagonal representation (e.g. Zeus in Fig. 1).

Finally, the current layout does not directly take into account dates
(e.g. birth, marriage, death), but when dealing with genealogies made
of several disconnected components, we try to align the layers accord-
ing to dates after they have been assigned by dot. However, very few
genealogies have dates at all, so in the worst case, the undated compo-
nents are positioned to the right end of the GeneaQuilts visualization.

3.2 Selection

Because focusing on an entity or a set of entities is important (T1-
T3), GeneaQuilts provides rich click & drag selection capabilities. All
blood paths related to selected entities (ancestors and descendants) are
highlighted. Moreover, details for the entity are shown on the Query
panel in the corresponding color (A1) (Fig. 4). As genealogists are
often interested in one of the ancestor/descendant trees, clicking on a
selection toggles between four modes: highlighting the whole blood
line, highlighting only ancestors, only descendants, or neither.

Since comparing the influence of individuals is often of interest to
genealogists (T7), we implemented selection dragging: dragging a
selection up/down over other individuals changes the current selection
and updates the associated trees. Thus with a simple drag gesture, the
user can quickly view and compare the trees of different individuals,
preserving the selection mode.

Finally, users can also perform multiple selections. Each new se-
lection and its trees get assigned a new color, and details on all the
selections appear in the Query panel with the corresponding color. In
a zoomed-out view, the colors of multiple highlighted paths are alpha-

Fig. 7. Bring & Slide from Henry IV to his son Louis XIII in the European
Royal Family genealogy. The full path can be seen in Fig. 4.

blended where they overlap (Fig. 6b). In a zoomed-in view, we use a
dashed pattern instead (Fig. 6a). This dashed pattern only appears if
paths are aligned (not just crossing) and thus (i) eliminates ambiguities
(e.g., blue and red would give purple, which could be the color of an-
other selection), and (ii) provides all the information to understand the
provenance of the many paths that are crossing, even for very complex
multiple selections.

The color blending feature can help identify complex relationships
(T4). For example by selecting an individual’s mother and father in
two different colors, we can immediately see paternal and maternal
grand-parents, cousins, uncles and aunts. By selecting two arbitrary
individuals we can immediately see if they have common ancestors or
descendants by investigating locations where their tree paths cross and
change color. Finally, color blending can be used to identify consan-
guineous marriages (T5) or membership in specific tribes.

3.3 Bring & Slide

Users can pan and zoom directly on the visualization. But since our
system is built for large scale genealogies, panning across generations
(layers) can be cumbersome, especially since researchers often want
to only follow specific paths in the genealogy. Moreover, it has been
shown that in matrix representations following paths can be challeng-
ing [14]. Although path highlighting [33] through selection helps, fol-
lowing paths on large genealogies can still delay user interaction. To
this end we have provided a novel navigation technique called Bring
& Slide that enables fluid and fast navigation through ancestors and
descendants (T1). This technique is a fusion of the Bring & Go and
Link Sliding navigation techniques for node-link diagrams [24].

If the user selects an individual and drags to the right, names of all
direct descendants appear as proxies to the right of the mouse cursor
(Fig. 7). As the user drags towards one of the proxies, the view ani-
mates and pans under the proxies so that the descendant of interest is
eventually brought under the mouse cursor when the proxy is reached.
This drag gesture requires a fixed distance to pan to the destination (50
pixels, a bit more for very large families to avoid siblings from occlud-
ing each other), independent from its distance in the visualization.

Once the destination is reached, it becomes the new selection. If
the user continues dragging to the right, the proxies of the new selec-
tion’s descendants appear and the user can navigate further down the
bloodline. Similarly, by selecting an individual and dragging left, the
proxies of her parents appear to the left of the mouse cursor. Thus the
user can in a single drag navigate quickly across large portions of the
genealogy, possibly going back-and-forth in the bloodline.

Although bring-and-slide is the navigation technique we imple-
mented for GeneaQuilts we could also easily incorporate the origi-
nal Bring & Go and Link Sliding [24] techniques, zooming out of the
visualization during the animated transitions to save time.

3.4 Overview

In order for users to remain aware of the context around their focus
(O2), an overview window presents a zoomed-out view of the entire
dataset (Fig. 4b). The region in focus is indicated in the overview by a
“panner” in the form of a semi-translucent focus rectangle.

The user may drag the panner to quickly refocus the main window.
Since the GeneaQuilts representation has an elongated shape, we com-
pute a spline that approximates this shape and restrict the dragging of
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