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SPATIAL  NETWORKS

• Various types:

• Real transport 
networks

1/3 of all stations in 
North. Am.

http://xkcd.com/1196

“For the pedantic rail enthusiasts, the definition 
of a subway used here is, with some caveats, "a 

network containing high capacity grade-
separated passenger rail transit lines which run 

frequently, serve an urban core, and are 
underground or elevated for at least part of their 

downtown route." For the rest of you, the 
definition is "an underground train in a city.” “
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• Various types:

• Real transport 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SPATIAL  NETWORKS
• Various structures:

• Most are planar

• Representations may 
vary

• e.g. “station 
space” vs. “stop 
space”

• Distinct from other 
types of networks, 
especially social networks

• Connectivity related 
to transfert

• strongly bounded 
(often 2)

• Small clustering
(Kurrant, Thiran, 2006)

In the space of stations, two stations are connected only if
they are physically directly connected !with no station in
between". This reflects the topology of the real-life infra-
structure. Here, the length of the shortest path between two
stations is the minimal number of stations one has to traverse
!stopping or not". This approach was used in Ref.
#4,10,11,14$.

In Fig. 1 we give an illustration of the three spaces. It is
easy to see that the graph in the space of stations is a sub-
graph of the graph in the space of stops, which in turn is a
subgraph of the graph in space of changes.

The topologies in the space of changes and space of stops
can be directly obtained from timetables. In the space of
changes, for each vehicle, we fully connect all stations it
stops at. Then we simplify the resulting graph by deleting
multiedges. In the space of stops, we connect every two con-
secutive stops in the routes of vehicles. As shown in Fig.
1!c", the topology in the space of stops can have shortcut
links that do not exist in the real-life infrastructure. These
shortcuts should be eliminated in the space-of-stations topol-
ogy, which makes it more challenging to obtain. To the best
of our knowledge, the only work on extracting the real physi-
cal structure !the topology in the space of stations" from
timetables was done in the context of railway networks in the
Ph.D. dissertation of Lebers #24$. The proposed solution first
obtains the physical graph in the space of stops. Next, spe-
cific structures in the initial physical graph, called edge
bundles, are detected. The Hamiltonian paths2 within these
bundles should indicate the real !nonshortcut" edges. Unfor-
tunately, the bundle recognition problem turned out to be NP
complete. The heuristics proposed in Ref. #24$ result in a
correct real and shortcut classification of 80% of the edges in
the studied graphs. The approach we propose in this paper is
based on simple observations that were omitted in Ref. #24$.
This results in a much simpler and more effective algorithm.

III. RELATED WORK

Timetables have been used as a data source for a network
construction in Refs. #3,13$. However, the topologies ob-
tained in these works were in either the space of changes or
space of stops; neither of them reflected the real-life infra-
structure. Moreover, real traffic patterns were not considered
in these studies. This is understandable, because it is difficult
to interpret a traffic flow in the spaces of changes and stops.
In the space of changes every train transforms into a clique.
Counting for a given edge the number of cliques it partici-
pates in would result in a weighted graph where we could
analyze not only the average number of changes, but also the
average waiting time on stations !the more trains on a given
edge, the shorter, on average, we have to wait". While this
approach might be interesting and useful, this is quite far
from the concept of traffic flows. In the space of stops, the
notion of a traffic flow is also unclear. Does the “traffic” on
a shortcut link B-D in Fig. 1!c" have any physical meaning?
We know that this traffic actually traverses the links B-C and
C-D, increasing their load and interfering with them. Ignor-
ing this effect would give us a biased picture. In contrast, in
the space of stations, the traffic flows have an unambiguous
and natural interpretation. It is the exact route of a train in
the graph representing the real physical infrastructure.

Another class of networks that can be constructed with
the help of timetables are airport networks #6,25–27$. There,
the nodes are the airports and edges are the flight connec-
tions. The weight of an edge reflects the traffic on this con-
nection, which can be approximated by the number of flights
that use it during 1 week. In this case, both the topology and
traffic information are explicitly given by timetables. This is
because the routes of planes are not constrained to any physi-
cal infrastructure, as opposed to roads for cars or rail tracks
for trains. So there are no “real” links and “shortcut” links. In
a sense all links are real and the topologies in the space of
stops and space of stations actually coincide.

Inferring the space-of-stations topology from timetables
becomes simple also in another special case, where the ve-

2The Hamiltonian path is a path that passes through every vertex
of a graph exactly once.

FIG. 1. !Color online" An illustration of the transportation network topology in three spaces. !a" The routes of three vehicles. The route
of line 2 passes through node C on the way from B to D, but the vehicle does not stop there. !b" The topology in the space of changes. Each
route results in a clique. An edge is indicated by two colors, when it originates from two routes, but is merged into a single link. !c" The
topology in the space of stops. The “shortcut” B-D is a legitimate edge in this space. !d" The topology in the space of stations. This graph
reflects the topology of the real-life infrastructure.

MACIEJ KURANT AND PATRICK THIRAN PHYSICAL REVIEW E 74, 036114 !2006"

036114-2



FIG. 3. The railway network in Switzerland !CH". !a", !b", !c" Physical graphs in the space of changes, stops, and stations, respectively.
!d" The real map of the rail tracks in Switzerland. !e" The logical graph. Every edge connects the first and last stations of a particular train
route; its weight reflects the number of trains following this route in any direction.
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(Kurrant, Thiran, 2006)

In the space of stations, two stations are connected only if
they are physically directly connected !with no station in
between". This reflects the topology of the real-life infra-
structure. Here, the length of the shortest path between two
stations is the minimal number of stations one has to traverse
!stopping or not". This approach was used in Ref.
#4,10,11,14$.
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easy to see that the graph in the space of stations is a sub-
graph of the graph in the space of stops, which in turn is a
subgraph of the graph in space of changes.

The topologies in the space of changes and space of stops
can be directly obtained from timetables. In the space of
changes, for each vehicle, we fully connect all stations it
stops at. Then we simplify the resulting graph by deleting
multiedges. In the space of stops, we connect every two con-
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links that do not exist in the real-life infrastructure. These
shortcuts should be eliminated in the space-of-stations topol-
ogy, which makes it more challenging to obtain. To the best
of our knowledge, the only work on extracting the real physi-
cal structure !the topology in the space of stations" from
timetables was done in the context of railway networks in the
Ph.D. dissertation of Lebers #24$. The proposed solution first
obtains the physical graph in the space of stops. Next, spe-
cific structures in the initial physical graph, called edge
bundles, are detected. The Hamiltonian paths2 within these
bundles should indicate the real !nonshortcut" edges. Unfor-
tunately, the bundle recognition problem turned out to be NP
complete. The heuristics proposed in Ref. #24$ result in a
correct real and shortcut classification of 80% of the edges in
the studied graphs. The approach we propose in this paper is
based on simple observations that were omitted in Ref. #24$.
This results in a much simpler and more effective algorithm.
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construction in Refs. #3,13$. However, the topologies ob-
tained in these works were in either the space of changes or
space of stops; neither of them reflected the real-life infra-
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to interpret a traffic flow in the spaces of changes and stops.
In the space of changes every train transforms into a clique.
Counting for a given edge the number of cliques it partici-
pates in would result in a weighted graph where we could
analyze not only the average number of changes, but also the
average waiting time on stations !the more trains on a given
edge, the shorter, on average, we have to wait". While this
approach might be interesting and useful, this is quite far
from the concept of traffic flows. In the space of stops, the
notion of a traffic flow is also unclear. Does the “traffic” on
a shortcut link B-D in Fig. 1!c" have any physical meaning?
We know that this traffic actually traverses the links B-C and
C-D, increasing their load and interfering with them. Ignor-
ing this effect would give us a biased picture. In contrast, in
the space of stations, the traffic flows have an unambiguous
and natural interpretation. It is the exact route of a train in
the graph representing the real physical infrastructure.
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tions. The weight of an edge reflects the traffic on this con-
nection, which can be approximated by the number of flights
that use it during 1 week. In this case, both the topology and
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3. Distribution of traffic

The heterogeneity of road speeds also has an impact on the distribution of vehicular traffic in the road
network. Faster roads are more attractive for human drivers, resulting in a concentration of traffic along these
roads, see Fig. 3.

The importance of a road or a junction can be characterised by the number of cars passing through it within
some time interval. This can roughly be approximated with the measure of link betweenness centrality be and
node betweenness centrality bv. It is given by the number of shortest paths with respect to travel-time between
all pairs of nodes in the corresponding graph, of which the particular link e or node v is part of [7,8,12–14].
Using the measure of betweenness centrality holds, we assume equally distributed origin–destination pairs,
identical average departure rates, and the absence of externalities. Even though these assumptions might not
hold for precise traffic flow predictions, they allow for estimating the implications of the network topology on
the spatial distribution of traffic flows.

The German road networks show an extremely high node betweenness centrality bv at only a small number
of nodes, while its values are very low at the majority of nodes. Fig. 4(a) shows the distribution of its relative
frequency density pðbvÞ. Over the entire range, the distribution follows the scale-free power law pðbvÞ#b$bv with
the exponent b ¼ 1:355 for Dresden, see also Table 1. High values of b can be interpreted as a high
concentration of traffic on the most important intersections.

Studying the link betweenness centrality be reveals a similar picture: the traffic volume is highly
concentrated on only a few roads, or to be more precise, on only a few road meters. By referring to road
meters instead of roads we overcome the effect of different road lengths. As a quantitative concentration
measure we use the Gini index g, which can be obtained from the Lorenz curve [15]. The Lorenz curve is an
monotonously increasing and convex curve joining the points ðF ;PÞ, where F is the fraction of all road meters
that have a fraction P of the total length of all shortest paths leading over it. The Gini index g is defined as
twice the area between the Lorenz curve and the diagonal. In the extreme case of a perfect equal distribution,
the Lorenz curve would follow the diagonal with g ¼ 0. In the other extreme case of a distribution similar to
delta function, we would find P ¼ 0 for all Fo1, and P ¼ 1 if F ¼ 1, and the Gini index would be g ¼ 1. The
Lorenz curve for the road network of Dresden is shown in Fig. 4(b) and can be interpreted as follows: 50% of
all road meters carry as little as 0.2% of the total traffic volume only (I), while almost 80% of the total traffic
volume are concentrated on no more than 10% of the roads (II). Most interestingly, half of the total traffic
volume is handled by only 3.2% of the roads in the network (III). The related Gini index of Dresden is
g ¼ 0:870, see Table 1.

ARTICLE IN PRESS

Fig. 3. Shortest paths in the road network of Dresden. The width of the links corresponds to the respective betweenness centrality be, that
is an approximate measure of the amount of traffic on that roads.

S. Lämmer et al. / Physica A 363 (2006) 89–9592

Lämmer, Gehlsen, Helbing, 2006

Betweenness centrality for the road network of Dresden, Saxony
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Mobile phones

Finally, an inevitable direction for further studies will be to bridge
the existing knowledge about centrality patterns in cities with those
revealed by new sources of geolocalized data. This could for example
include the comparison of recent results based on pervasive geolo-
calized data with morphological properties of cities extracted from
mobility surveys and remote censing data (see for example17,21 for
recent international comparisons). The centrality extracted from the
road network structure has also been shown recently to be correlated
with economical activity27,28 and it would interesting to understand
how these network properties compare with patterns extracted from
pervasive geolocalized data.

Methods
Spatial delimitation of cities. Comparing the spatial structure of cities of very
different population sizes and areas requires to rely on a harmonized definition of
cities that goes beyond the arbitrariness of the administrative boundaries26,31. To this
end we have chosen to rely on the urban areas defined by the AUDES initiative (Areas
Urbanas De ESpaña)36 which capture some coherent delimitations of cities regarding
the home-work commuting patterns of individuals living in the core city of the
metropolitan areas and in their surrounding municipalities. These delimitations are
built upon statistical criteria based on the proportion of residents of surrounding
municipalities that commute to the main city to work.

Average distance between individuals and dilatation index. We started with the
Venables index16, defined as:

V~
X

i=j

sisjdi,j ð4Þ

with si(t) 5 ni(t)/N(t) the share of individuals present in cell i at time t, and dij the
distance between i and j. When all activity is concentrated in one spatial unit only, the
minimum value zero of V is reached. An important point of this dilatation index is
that one doesn’t need to determine hotspots to compute it. By normalizing V by the
densities, we can compute a weighted average distance, the ‘Venables distance’

DV tð Þ~
P

ivj si tð Þsj tð ÞdijP
ivj si tð Þsj tð Þ ð5Þ

with si(t) 5 ni(t)/N(t) the share of individuals present in cell i at time t. In order to

compare the value of DV across cities, we compute DV tð Þ
. ffiffiffiffi

A
p

with A the area of the

city. By considering all pairs of cells and weighting their distance by the densities of
individuals in each of them, DV (t) signals how much the important places of the city
at time t are distant from each other.

Identification of the hotspots. The data gives access to the spatial density r(i, t) of
users at different moments. The full density is a complex object and we have to extract
relevant and useful information. The locations that display a density much larger than
the others - the hotspots - give a good picture of the city by showing where most of the
people are. The hotspots thus contain important information about points of interest
and activities in the city.

The determination of centres and subcentres is a problem which has been broadly
tackled in urban economics32–34. Starting from a spatial distribution of densities, we
have to identify the local maxima. This is in principle a simple problem solved by the
choice of a threshold d for the density r: a cell i is a hotspot at time t if the instant-
aneous density of users r(i, t) . d. This is for example what was done in32 to
determine employment centres in Los Angeles. It is however clear that this method
introduces some arbitrariness due to the choice of d, and also requires prior know-
ledge of the city to which it is applied to choose a relevant value of d. Nonparametric
methods have also been applied to determine the number of centres, some based on
the regression of the natural logarithm of employment density on distance from the
centre33, some on the exponent of the negative exponential fit of the density distri-
bution35. Limits of these methods stand in the fact that they return a unique number of
centres that could be biased when the actual density distribution is not properly fitted
by an exponential law. Here we will propose an alternative method that allows us to
control the impact of this choice.

A first simple criterion is to choose the point that corresponds to the average
m tð Þ~r i,tð Þ of the distribution at time t: all the cells whose density is larger than m
are hotspots. This is indeed a weak definition of what can be considered as a hotspot,
and we propose here to use it as a ‘lower’ bound dmin 5 m.

In order to understand how the various properties of hotspots will depend on
this definition, we introduce a more restrictive definition which will be consid-
ered as an upper bound of what can be considered as a hotspot. In the following
we discuss how to find this upper bound. In order to characterize the disparity of
the activity in the city and to isolate the dominant places, we first plot the Lorenz
curve of the density distribution in the city at each hour. The Lorenz curve, a
standard object in economics, is a graphical representation of the cumulative
distribution function of an empirical probability distribution. For a given hour,
we have the distribution of densities r(i, t) and we sort them in increasing rank,
and denote them by r(1, t) , r(2, t) , … , r(n, t) where n is the number of
cells. The Lorenz curve is constructed by plotting on the x-axis the proportion of
cells F 5 i/n and on the y-axis the corresponding proportion of users density L
with:

L i,tð Þ~
Pi

j~1 r j,tð Þ
Pn

j~1 r j,tð Þ
ð6Þ

If all the densities were of the same order the Lorenz curve would be the diagonal
from (0, 0) to (1, 1). In general we observe a concave curve with a more or less
strong curvature, and the area between the diagonal and the actual curve is
related to the Gini coefficient, an important indicator of inequality used in
economics.

Figure 12 | Location of the hotspots in the metropolitan area of Barcelona, selected with two different criteria: the Average criterion and our more
restrictive criterion (‘LouBar’). Here density data are aggregated on a grid composed of 1 km2 square cells. This figure was created with R and LibreOffice
Draw. It makes use of a vector layer of the boundaries of Spanish municipalities that is available under free licence.
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object which displays variation in time and space. We will consider
here two main directions to tackle this problem. The first one is to
define global indicators that consider all points and weight them by
the user density. The second approach consists in identifying local
maxima of the function r(i, t), or in other words, the hotspots. There
are pros and cons in each method. Looking at hotspots is convenient
since it provides a clear picture of the important locations in the city,
but contains some arbitrariness in their determination. On the other
hand, working with weighted indices does not require to identify
hotspots but at the cost of producing results more difficult to inter-
pret. These two approaches can however be seen as complementary
since they highlight different properties of the city: weighted indices
inform us about the global properties of a given city, while the hot-
spots give us a more local look and allow us to concentrate on the
‘heart’ of the city. This is why in the following we will successively
apply the two methods.

Global analysis. Urban dilatation index. The average weighted dis-
tance DV (t) between individuals in the city (see section Methods for
the precise definition) and its evolution during the course of an
average weekday provides a first interesting indicator about the
organization of the city. Figure 6 (a) shows the evolution of this
normalized average, weighted distance during a typical weekday.
We can essentially distinguish two broad categories according to
the spatial organization of residences and activities:

. In the case of the simple picture of a typical monocentric city with
predominant Central Business District (CBD), the city collapses
in the morning when people living in the suburbs commute to
their workplaces, and expands in the evening when they get back
home. We then expect in this case a large variation (at the city
scale) of the average distance DV. In this case, activity and res-
idential places are spatially ‘‘segregated’’.

Figure 2 | Population sizes, areas and densities of 31 Spanish cities (urban areas) with more than 200,000 inhabitants in 2011. (a) Population size vs.
area. The set of cities under study displays a large variety of sizes. We also note that there is no general statistical relation between the population
size of Spanish urban areas and their spatial extension. (b) Rank-size distribution of their residential density and phone activity density (rescaled by a
constant factor given by the inverse of the fraction of phone users in the denser urban area, rBarcelona,residential/rBarcelona,phoneusers). The distribution shows
that the fraction of phone users is almost constant in all cities. This figure was created with R and LibreOffice Draw.

Figure 3 | Map of the metropolitan area of Barcelona. The white area represents the metropolitan area (administrative delimitation), the brown area
represents territories surrounding the metropolitan area and the blue area the sea. (a) Voronoi cells of the mobile phone antennas point pattern.
(b) Intersection between the Voronoi cells and the metropolitan area. (c) Grid composed of 1 km2 square cells on which we aggregated the number/
density of unique phone users associated to each phone antenna (NB: these maps were created with R standard packages for handling spatial data and
freely available layers).
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Pervasive infrastructures, such as cell phone networks, enable to capture large amounts of human behavioral
data but also provide information about the structure of cities and their dynamical properties. In this article,
we focus on these last aspects by studying phone data recorded during 55 days in 31 Spanish cities. We first
define an urban dilatation index which measures how the average distance between individuals evolves
during the day, allowing us to highlight different types of city structure. We then focus on hotspots, the most
crowded places in the city. We propose a parameter free method to detect them and to test the robustness of
our results. The number of these hotspots scales sublinearly with the population size, a result in agreement
with previous theoretical arguments and measures on employment datasets. We study the lifetime of these
hotspots and show in particular that the hierarchy of permanent ones, which constitute the ‘heart’ of the city,
is very stable whatever the size of the city. The spatial structure of these hotspots is also of interest and allows
us to distinguish different categories of cities, from monocentric and ‘‘segregated’’ where the spatial
distribution is very dependent on land use, to polycentric where the spatial mixing between land uses is
much more important. These results point towards the possibility of a new, quantitative classification of
cities using high resolution spatio-temporal data.

P
ervasive, geolocalized data generated by individuals have recently triggered a renewed interest for the study
of cities and urban dynamics, and in particular individual mobility patterns1. Various data sources have been
used such as car GPS2, RFIDs for collective transportation3, and also data from social networking applica-

tions such as Twitter4 or Foursquare5. A recent, very important source of data is given by individual mobile phone
data6,7. These data have allowed to study the individual mobility patterns with a high spatial and temporal
resolution8–10, the automatic detection of urban land uses11, or the detection of communities based on human
interactions12.

Morphological aspects, such as the quantitative characterization and comparison of cities through their density
landscape, their space consumption, their degree of polycentrism, or the clustering degree of their activity centers,
have meanwhile been studied for a long time in quantitative geography and spatial economy13–21. Until the late
2000, these quantitative comparisons of urban forms were based on census data, transport surveys or remote
sensing data, all giving an estimation of the density of individuals and land uses in the city at a fine spatial
granularity but at a much more coarse grain when considering the temporal evolution. We note here that early
studies in quantitative urban geography22,23 estimated the density of individuals at various hours of the day in city
centers using transport surveys and handmade cord counts and could follow the morphological and socio-
economic evolution of cities during a typical weekday. Additionaly many traffic surveys in cities worldwide have
long provided a general knowledge of the timing of urban mobility. However, given their temporal resolution and
the lack of adequate data, these studies could not investigate some interesting questions related to some dynamical
properties of the spatial structure of cities: how much does the city shape change through the course of the day?
Where are the city’s hotspots located at different hours of the day? How are these hotspots spatially organized? Is
the hierarchy and the spatial organization of hotspots robust through time? Is there some kind of typical
distance(s) characterizing the permanent core, or ‘backbone’, of each city? Mobile phone data contain the spatial
information about individuals and how it evolves during the day. These datasets thus give us the opportunity to
answer such questions and to characterize quantitatively the spatial structure of cities24. In this article, we address
some of these questions using mobile phone data for a set of 31 Spanish cities shown on Figure 1. We focus on the
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is very stable whatever the size of the city. The spatial structure of these hotspots is also of interest and allows
us to distinguish different categories of cities, from monocentric and ‘‘segregated’’ where the spatial
distribution is very dependent on land use, to polycentric where the spatial mixing between land uses is
much more important. These results point towards the possibility of a new, quantitative classification of
cities using high resolution spatio-temporal data.
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ervasive, geolocalized data generated by individuals have recently triggered a renewed interest for the study
of cities and urban dynamics, and in particular individual mobility patterns1. Various data sources have been
used such as car GPS2, RFIDs for collective transportation3, and also data from social networking applica-

tions such as Twitter4 or Foursquare5. A recent, very important source of data is given by individual mobile phone
data6,7. These data have allowed to study the individual mobility patterns with a high spatial and temporal
resolution8–10, the automatic detection of urban land uses11, or the detection of communities based on human
interactions12.

Morphological aspects, such as the quantitative characterization and comparison of cities through their density
landscape, their space consumption, their degree of polycentrism, or the clustering degree of their activity centers,
have meanwhile been studied for a long time in quantitative geography and spatial economy13–21. Until the late
2000, these quantitative comparisons of urban forms were based on census data, transport surveys or remote
sensing data, all giving an estimation of the density of individuals and land uses in the city at a fine spatial
granularity but at a much more coarse grain when considering the temporal evolution. We note here that early
studies in quantitative urban geography22,23 estimated the density of individuals at various hours of the day in city
centers using transport surveys and handmade cord counts and could follow the morphological and socio-
economic evolution of cities during a typical weekday. Additionaly many traffic surveys in cities worldwide have
long provided a general knowledge of the timing of urban mobility. However, given their temporal resolution and
the lack of adequate data, these studies could not investigate some interesting questions related to some dynamical
properties of the spatial structure of cities: how much does the city shape change through the course of the day?
Where are the city’s hotspots located at different hours of the day? How are these hotspots spatially organized? Is
the hierarchy and the spatial organization of hotspots robust through time? Is there some kind of typical
distance(s) characterizing the permanent core, or ‘backbone’, of each city? Mobile phone data contain the spatial
information about individuals and how it evolves during the day. These datasets thus give us the opportunity to
answer such questions and to characterize quantitatively the spatial structure of cities24. In this article, we address
some of these questions using mobile phone data for a set of 31 Spanish cities shown on Figure 1. We focus on the
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spatio-temporal properties of cities and, defining new metrics, study
their structural properties and exhibit interesting patterns of urban
systems.

Results
Our analysis is based on aggregated and anonymized mobile phone
data and concerns 31 Spanish urban areas studied during weekdays.
These urban areas are very diverse in terms of geographical location,
area, population size and density, as illustrated in Figure 2. In par-
ticular, the wide range of population sizes will allow us to test some
scaling relations and also to identify various behaviors. We will first
describe the dataset and then present the results obtained about
several aspects of cities.

Data description. Our analysis is based on a mobile phone dataset
provided by a Spanish telecommunications operator. The aggregated
records represent the number of unique individuals using a given
antenna for each hour of the day. No individual information or
records were available for this study. These data provide some
snapshots of the spatial distribution of people in the city at
successive points in time. We have this information for the 31
Spanish urban areas of more than 200,000 inhabitants, and for 55
days. The number of users (per hour) represents in average 2% of the
total population and at most 5% of the total population. These
percentages are almost the same for all the urban areas. Given the
irregularity of the spatial distribution of the antennas in each city and
from one city to another, we spatially aggregated the number/
densities of users recorded each hour in each mobile phone
antenna on a regular square grid of varying cell size a, in order to
simplify comparisons of indicators between cities, as shown on

Figure 3. The choice of the spatial scale of data aggregation is
known to be an important source of bias in spatial analysis25,
hence we tested the robustness of our results on three different
sizes of grid cells (see section Methods for details).

General features. In order to get a preliminary grasp of the data we
plot the time evolution of the number of users along the day and see if
it follows the same pattern in every city. Figure 4 shows the average
number of mobile phone users per hour according to the day of the
week for six of them. Globally, the number of phone users is signifi-
cantly higher during the weekdays than during the weekends, except
at night time. From 11pm to 8am, the number of users is relatively
low, it reaches a minimum at 5am during weekdays and at 7am
during the weekend. For all cities we observe two activity peaks,
one at 12am during weekdays (1pm during the weekend) and
another one at 6pm during weekdays (and at 8pm during the
weekend).

In order to compare these values obtained for different cities, we
rescale the values by the total number of users for an average week-
day. We show the results in Figure 5. The rescaled plot suggests the
existence of a single ‘urban rhythm’ common to all cities. The data
collapse is very good in the morning, while in the afternoon we
observe a little more variability from one city to another. It is inter-
esting to note that in four cities located in the western part of
Andalusia (Sevilla, Granada, Cordoba and Jerez de la Frontera) the
activity restarts later in the afternoon, around 5pm one hour later
than in the other cities.

Global weighted indicators versus hotspots analysis. Essentially, the
mobile phone data give access to the local density r(i, t) of users at a
location i and at a time t. The difficulty is then to study this complex

Figure 1 | The 31 Spanish urban areas with more than 200,000 inhabitants in 2011. Map of their locations and spatial extensions. The set of cities
analyzed in this article includes very different types of very different types: central cities, port cities and cities on islands. (NB: the municipalities included
in each urban area are those included in the AUDES database. This map was generated using standard packages of the R statistical software for handling
spatial data. The vector layer of the Spanish municipalities boundaries is available under free licence on multiple websites, e.g. gadm.org.).

www.nature.com/scientificreports
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Mobile phones

17 different motifs. We test this finding here by extracting
motifs for both cell phone users in our dataset and from the
2010/2011 Massachusetts travel survey [32], which contains
37, 023 people’s travel dairy over one day on a rolling ba-
sis. Fig. 3.2 shows the distributions of the 17 motifs which
are similar for the two different data sources, and they also
agree with the previous findings measured in Chicago and
Paris. This result shows the validity of the proposed method
for triangulated cell phone data, which presents a good al-
ternative for analyzing daily human mobility patterns and
complements expensive surveys.
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Figure 3.2: Frequent daily motifs. The 17 most fre-
quent motifs account for over 90% of the measured
daily trips. The distributions of the 17 motifs ex-
tracted from cell phone data and the Massachusetts
travel survey are similar, and also conform to previ-
ous findings in Paris and Chicago [39].

4. INFERRING INDIVIDUAL ACTIVITIES
AND TRAVEL

To make the million users’ mobile phone traces useful
for urban land use, community planning and transportation
planning, it is crucial to answer one of the most important
questions: “What are people doing in space and time?” [1,
6, 16, 30, 24, 25, 26]. This question includes inferring the
spatiotemporal activities that people engage in, and their
travel (e.g., trip chaining, and road usage, etc.) induced by
the needs of pursuing activities [35].

In order to infer the types and patterns of activities of
anonymous individuals, by learning their historical presence
in space and time and characteristics of their destinations
(e.g., land use, points-of-interest (POIs)), we need to address
several challenges presented by the mobile phone records
(for billing purposes) as opposed to by GPS data for which
many algorithms and methods have been developed to study
human behavior [47, 17]. First, mobile phone data are per-
ceived with indefinite gaps in space and time, while GPS
data are recorded with a high frequency such that they can
be treated as continuous trajectories. Second, the locational
accuracy of mobile phone data is lower than the pinpointed
GPS traces (depending on the technologies [36]).

In this section, we present a class of algorithms that are
tailored to address the distinct characteristics of the mobile
phone data (triangulated at 200- to 300-meter accuracy lev-
el) such that we can use the filtered data to infer human
activities and their travel in space and time. In contrast
to the grid-based algorithm presented in Section 2, the one
presented here is designed to exploit the maximum spatial
accuracy possible. Comparing these two classes of data fil-
tering methods is beyond the scope of this paper and will
be presented elsewhere.

4.1 Extracting Stay, Pass-by and Potential S-
tay Areas

For the purpose of extracting individuals’ whereabouts
from phone records, including their stationary stay locations
(so as to infer their activity types) and their moving pass-by
locations (so as to infer their travel path and road usage),

we employ a method inspired by Hariharan and Toyama’s
study [17]. We demonstrate this process of data filtering in
Figure 4.1, and discuss details as follows.

Let sequence Di = (di(1), di(2), di(3), ..., di(ni)) be the
observed data for a given anonymous user i, where di(k) =
(t(k), x(k), y(k))′ for k = 1, ..., ni, t(k), x(k), and y(k) are
the time, longitude, and latitude of the k-th observation
of user i. First, we extract points di(k) that are spatially
close (i.e. within roaming distance of 300 meters) to their
subsequent observations, say, di(k + 1), di(k + 2), ..., di(k +
m). To reduce the “jumps” in the location sequence of the
mobile phone data, we assume that di(k), ..., di(k + m) are
observed when user i is at a specific location, i.e., themedoid
of the set of locations {(xi(k), yi(k))′, ..., (xi(k +m), yi(k +
m))′}, which is denoted by

Med({(xi(k), yi(k))
′, ..., (xi(k +m), yi(k +m))′}).

This treatment respects the time order at first, to ignore
noisy “jumps” in estimated location, but then disregards
time ordering to apply the agglomerative clustering algorith-
m [17] to consolidate points that are close in space but may
be far away in time. The points to be consolidated together
form a cluster whose diameter is required to be no more than
a certain threshold (set to be 500 meters). Again, we mod-
ify the observation locations to the corresponding medoids
of the clusters (see Figures 4.1(a) and (b)). It turns out
that by these treatments, we greatly reduce the noise in the
location sequences of the mobile phone data (i.e., errors in
signal triangulations).
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Figure 4.1: Extracting Stay, Pass-by and Potential
Stay Areas from the Phone Data for an Anonymous
User in a 2-Month Period.

Second, we impose the time duration criterion on the clean
data, and extract the stay locations whose durations exceed
a certain threshold (set as 10 minutes) (see Figure 4.1(c)). In
the presented example we extract 31 distinct stay locations
from the 1,776 phone records in the 2-month period of the
exhibited anonymous user. The rest of the points are called
pass-by points, where we don’t observe any lengthy stays in
these areas. Note that it is possible that the user might
actually stay in some of these pass-by areas or areas that
we don’t even observe. In these cases, information about
time and location is totally or partially latent to us as we
don’t observe it from the phone records. However, all the

(Jiang, Fiore, Yang, Yingxiang, 
Ferreira, Frazzoli, González, 2013)

Finally, an inevitable direction for further studies will be to bridge
the existing knowledge about centrality patterns in cities with those
revealed by new sources of geolocalized data. This could for example
include the comparison of recent results based on pervasive geolo-
calized data with morphological properties of cities extracted from
mobility surveys and remote censing data (see for example17,21 for
recent international comparisons). The centrality extracted from the
road network structure has also been shown recently to be correlated
with economical activity27,28 and it would interesting to understand
how these network properties compare with patterns extracted from
pervasive geolocalized data.

Methods
Spatial delimitation of cities. Comparing the spatial structure of cities of very
different population sizes and areas requires to rely on a harmonized definition of
cities that goes beyond the arbitrariness of the administrative boundaries26,31. To this
end we have chosen to rely on the urban areas defined by the AUDES initiative (Areas
Urbanas De ESpaña)36 which capture some coherent delimitations of cities regarding
the home-work commuting patterns of individuals living in the core city of the
metropolitan areas and in their surrounding municipalities. These delimitations are
built upon statistical criteria based on the proportion of residents of surrounding
municipalities that commute to the main city to work.

Average distance between individuals and dilatation index. We started with the
Venables index16, defined as:

V~
X

i=j

sisjdi,j ð4Þ

with si(t) 5 ni(t)/N(t) the share of individuals present in cell i at time t, and dij the
distance between i and j. When all activity is concentrated in one spatial unit only, the
minimum value zero of V is reached. An important point of this dilatation index is
that one doesn’t need to determine hotspots to compute it. By normalizing V by the
densities, we can compute a weighted average distance, the ‘Venables distance’

DV tð Þ~
P

ivj si tð Þsj tð ÞdijP
ivj si tð Þsj tð Þ ð5Þ

with si(t) 5 ni(t)/N(t) the share of individuals present in cell i at time t. In order to

compare the value of DV across cities, we compute DV tð Þ
. ffiffiffiffi

A
p

with A the area of the

city. By considering all pairs of cells and weighting their distance by the densities of
individuals in each of them, DV (t) signals how much the important places of the city
at time t are distant from each other.

Identification of the hotspots. The data gives access to the spatial density r(i, t) of
users at different moments. The full density is a complex object and we have to extract
relevant and useful information. The locations that display a density much larger than
the others - the hotspots - give a good picture of the city by showing where most of the
people are. The hotspots thus contain important information about points of interest
and activities in the city.

The determination of centres and subcentres is a problem which has been broadly
tackled in urban economics32–34. Starting from a spatial distribution of densities, we
have to identify the local maxima. This is in principle a simple problem solved by the
choice of a threshold d for the density r: a cell i is a hotspot at time t if the instant-
aneous density of users r(i, t) . d. This is for example what was done in32 to
determine employment centres in Los Angeles. It is however clear that this method
introduces some arbitrariness due to the choice of d, and also requires prior know-
ledge of the city to which it is applied to choose a relevant value of d. Nonparametric
methods have also been applied to determine the number of centres, some based on
the regression of the natural logarithm of employment density on distance from the
centre33, some on the exponent of the negative exponential fit of the density distri-
bution35. Limits of these methods stand in the fact that they return a unique number of
centres that could be biased when the actual density distribution is not properly fitted
by an exponential law. Here we will propose an alternative method that allows us to
control the impact of this choice.

A first simple criterion is to choose the point that corresponds to the average
m tð Þ~r i,tð Þ of the distribution at time t: all the cells whose density is larger than m
are hotspots. This is indeed a weak definition of what can be considered as a hotspot,
and we propose here to use it as a ‘lower’ bound dmin 5 m.

In order to understand how the various properties of hotspots will depend on
this definition, we introduce a more restrictive definition which will be consid-
ered as an upper bound of what can be considered as a hotspot. In the following
we discuss how to find this upper bound. In order to characterize the disparity of
the activity in the city and to isolate the dominant places, we first plot the Lorenz
curve of the density distribution in the city at each hour. The Lorenz curve, a
standard object in economics, is a graphical representation of the cumulative
distribution function of an empirical probability distribution. For a given hour,
we have the distribution of densities r(i, t) and we sort them in increasing rank,
and denote them by r(1, t) , r(2, t) , … , r(n, t) where n is the number of
cells. The Lorenz curve is constructed by plotting on the x-axis the proportion of
cells F 5 i/n and on the y-axis the corresponding proportion of users density L
with:

L i,tð Þ~
Pi

j~1 r j,tð Þ
Pn

j~1 r j,tð Þ
ð6Þ

If all the densities were of the same order the Lorenz curve would be the diagonal
from (0, 0) to (1, 1). In general we observe a concave curve with a more or less
strong curvature, and the area between the diagonal and the actual curve is
related to the Gini coefficient, an important indicator of inequality used in
economics.

Figure 12 | Location of the hotspots in the metropolitan area of Barcelona, selected with two different criteria: the Average criterion and our more
restrictive criterion (‘LouBar’). Here density data are aggregated on a grid composed of 1 km2 square cells. This figure was created with R and LibreOffice
Draw. It makes use of a vector layer of the boundaries of Spanish municipalities that is available under free licence.
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object which displays variation in time and space. We will consider
here two main directions to tackle this problem. The first one is to
define global indicators that consider all points and weight them by
the user density. The second approach consists in identifying local
maxima of the function r(i, t), or in other words, the hotspots. There
are pros and cons in each method. Looking at hotspots is convenient
since it provides a clear picture of the important locations in the city,
but contains some arbitrariness in their determination. On the other
hand, working with weighted indices does not require to identify
hotspots but at the cost of producing results more difficult to inter-
pret. These two approaches can however be seen as complementary
since they highlight different properties of the city: weighted indices
inform us about the global properties of a given city, while the hot-
spots give us a more local look and allow us to concentrate on the
‘heart’ of the city. This is why in the following we will successively
apply the two methods.

Global analysis. Urban dilatation index. The average weighted dis-
tance DV (t) between individuals in the city (see section Methods for
the precise definition) and its evolution during the course of an
average weekday provides a first interesting indicator about the
organization of the city. Figure 6 (a) shows the evolution of this
normalized average, weighted distance during a typical weekday.
We can essentially distinguish two broad categories according to
the spatial organization of residences and activities:

. In the case of the simple picture of a typical monocentric city with
predominant Central Business District (CBD), the city collapses
in the morning when people living in the suburbs commute to
their workplaces, and expands in the evening when they get back
home. We then expect in this case a large variation (at the city
scale) of the average distance DV. In this case, activity and res-
idential places are spatially ‘‘segregated’’.

Figure 2 | Population sizes, areas and densities of 31 Spanish cities (urban areas) with more than 200,000 inhabitants in 2011. (a) Population size vs.
area. The set of cities under study displays a large variety of sizes. We also note that there is no general statistical relation between the population
size of Spanish urban areas and their spatial extension. (b) Rank-size distribution of their residential density and phone activity density (rescaled by a
constant factor given by the inverse of the fraction of phone users in the denser urban area, rBarcelona,residential/rBarcelona,phoneusers). The distribution shows
that the fraction of phone users is almost constant in all cities. This figure was created with R and LibreOffice Draw.

Figure 3 | Map of the metropolitan area of Barcelona. The white area represents the metropolitan area (administrative delimitation), the brown area
represents territories surrounding the metropolitan area and the blue area the sea. (a) Voronoi cells of the mobile phone antennas point pattern.
(b) Intersection between the Voronoi cells and the metropolitan area. (c) Grid composed of 1 km2 square cells on which we aggregated the number/
density of unique phone users associated to each phone antenna (NB: these maps were created with R standard packages for handling spatial data and
freely available layers).
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E-28043 Madrid, Spain, 5Telefonica Research, E-28050 Madrid, Spain, 6Centre d’Analyse et de Mathématique Sociales,
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Pervasive infrastructures, such as cell phone networks, enable to capture large amounts of human behavioral
data but also provide information about the structure of cities and their dynamical properties. In this article,
we focus on these last aspects by studying phone data recorded during 55 days in 31 Spanish cities. We first
define an urban dilatation index which measures how the average distance between individuals evolves
during the day, allowing us to highlight different types of city structure. We then focus on hotspots, the most
crowded places in the city. We propose a parameter free method to detect them and to test the robustness of
our results. The number of these hotspots scales sublinearly with the population size, a result in agreement
with previous theoretical arguments and measures on employment datasets. We study the lifetime of these
hotspots and show in particular that the hierarchy of permanent ones, which constitute the ‘heart’ of the city,
is very stable whatever the size of the city. The spatial structure of these hotspots is also of interest and allows
us to distinguish different categories of cities, from monocentric and ‘‘segregated’’ where the spatial
distribution is very dependent on land use, to polycentric where the spatial mixing between land uses is
much more important. These results point towards the possibility of a new, quantitative classification of
cities using high resolution spatio-temporal data.

P
ervasive, geolocalized data generated by individuals have recently triggered a renewed interest for the study
of cities and urban dynamics, and in particular individual mobility patterns1. Various data sources have been
used such as car GPS2, RFIDs for collective transportation3, and also data from social networking applica-

tions such as Twitter4 or Foursquare5. A recent, very important source of data is given by individual mobile phone
data6,7. These data have allowed to study the individual mobility patterns with a high spatial and temporal
resolution8–10, the automatic detection of urban land uses11, or the detection of communities based on human
interactions12.

Morphological aspects, such as the quantitative characterization and comparison of cities through their density
landscape, their space consumption, their degree of polycentrism, or the clustering degree of their activity centers,
have meanwhile been studied for a long time in quantitative geography and spatial economy13–21. Until the late
2000, these quantitative comparisons of urban forms were based on census data, transport surveys or remote
sensing data, all giving an estimation of the density of individuals and land uses in the city at a fine spatial
granularity but at a much more coarse grain when considering the temporal evolution. We note here that early
studies in quantitative urban geography22,23 estimated the density of individuals at various hours of the day in city
centers using transport surveys and handmade cord counts and could follow the morphological and socio-
economic evolution of cities during a typical weekday. Additionaly many traffic surveys in cities worldwide have
long provided a general knowledge of the timing of urban mobility. However, given their temporal resolution and
the lack of adequate data, these studies could not investigate some interesting questions related to some dynamical
properties of the spatial structure of cities: how much does the city shape change through the course of the day?
Where are the city’s hotspots located at different hours of the day? How are these hotspots spatially organized? Is
the hierarchy and the spatial organization of hotspots robust through time? Is there some kind of typical
distance(s) characterizing the permanent core, or ‘backbone’, of each city? Mobile phone data contain the spatial
information about individuals and how it evolves during the day. These datasets thus give us the opportunity to
answer such questions and to characterize quantitatively the spatial structure of cities24. In this article, we address
some of these questions using mobile phone data for a set of 31 Spanish cities shown on Figure 1. We focus on the
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distribution is very dependent on land use, to polycentric where the spatial mixing between land uses is
much more important. These results point towards the possibility of a new, quantitative classification of
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tions such as Twitter4 or Foursquare5. A recent, very important source of data is given by individual mobile phone
data6,7. These data have allowed to study the individual mobility patterns with a high spatial and temporal
resolution8–10, the automatic detection of urban land uses11, or the detection of communities based on human
interactions12.

Morphological aspects, such as the quantitative characterization and comparison of cities through their density
landscape, their space consumption, their degree of polycentrism, or the clustering degree of their activity centers,
have meanwhile been studied for a long time in quantitative geography and spatial economy13–21. Until the late
2000, these quantitative comparisons of urban forms were based on census data, transport surveys or remote
sensing data, all giving an estimation of the density of individuals and land uses in the city at a fine spatial
granularity but at a much more coarse grain when considering the temporal evolution. We note here that early
studies in quantitative urban geography22,23 estimated the density of individuals at various hours of the day in city
centers using transport surveys and handmade cord counts and could follow the morphological and socio-
economic evolution of cities during a typical weekday. Additionaly many traffic surveys in cities worldwide have
long provided a general knowledge of the timing of urban mobility. However, given their temporal resolution and
the lack of adequate data, these studies could not investigate some interesting questions related to some dynamical
properties of the spatial structure of cities: how much does the city shape change through the course of the day?
Where are the city’s hotspots located at different hours of the day? How are these hotspots spatially organized? Is
the hierarchy and the spatial organization of hotspots robust through time? Is there some kind of typical
distance(s) characterizing the permanent core, or ‘backbone’, of each city? Mobile phone data contain the spatial
information about individuals and how it evolves during the day. These datasets thus give us the opportunity to
answer such questions and to characterize quantitatively the spatial structure of cities24. In this article, we address
some of these questions using mobile phone data for a set of 31 Spanish cities shown on Figure 1. We focus on the
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spatio-temporal properties of cities and, defining new metrics, study
their structural properties and exhibit interesting patterns of urban
systems.

Results
Our analysis is based on aggregated and anonymized mobile phone
data and concerns 31 Spanish urban areas studied during weekdays.
These urban areas are very diverse in terms of geographical location,
area, population size and density, as illustrated in Figure 2. In par-
ticular, the wide range of population sizes will allow us to test some
scaling relations and also to identify various behaviors. We will first
describe the dataset and then present the results obtained about
several aspects of cities.

Data description. Our analysis is based on a mobile phone dataset
provided by a Spanish telecommunications operator. The aggregated
records represent the number of unique individuals using a given
antenna for each hour of the day. No individual information or
records were available for this study. These data provide some
snapshots of the spatial distribution of people in the city at
successive points in time. We have this information for the 31
Spanish urban areas of more than 200,000 inhabitants, and for 55
days. The number of users (per hour) represents in average 2% of the
total population and at most 5% of the total population. These
percentages are almost the same for all the urban areas. Given the
irregularity of the spatial distribution of the antennas in each city and
from one city to another, we spatially aggregated the number/
densities of users recorded each hour in each mobile phone
antenna on a regular square grid of varying cell size a, in order to
simplify comparisons of indicators between cities, as shown on

Figure 3. The choice of the spatial scale of data aggregation is
known to be an important source of bias in spatial analysis25,
hence we tested the robustness of our results on three different
sizes of grid cells (see section Methods for details).

General features. In order to get a preliminary grasp of the data we
plot the time evolution of the number of users along the day and see if
it follows the same pattern in every city. Figure 4 shows the average
number of mobile phone users per hour according to the day of the
week for six of them. Globally, the number of phone users is signifi-
cantly higher during the weekdays than during the weekends, except
at night time. From 11pm to 8am, the number of users is relatively
low, it reaches a minimum at 5am during weekdays and at 7am
during the weekend. For all cities we observe two activity peaks,
one at 12am during weekdays (1pm during the weekend) and
another one at 6pm during weekdays (and at 8pm during the
weekend).

In order to compare these values obtained for different cities, we
rescale the values by the total number of users for an average week-
day. We show the results in Figure 5. The rescaled plot suggests the
existence of a single ‘urban rhythm’ common to all cities. The data
collapse is very good in the morning, while in the afternoon we
observe a little more variability from one city to another. It is inter-
esting to note that in four cities located in the western part of
Andalusia (Sevilla, Granada, Cordoba and Jerez de la Frontera) the
activity restarts later in the afternoon, around 5pm one hour later
than in the other cities.

Global weighted indicators versus hotspots analysis. Essentially, the
mobile phone data give access to the local density r(i, t) of users at a
location i and at a time t. The difficulty is then to study this complex

Figure 1 | The 31 Spanish urban areas with more than 200,000 inhabitants in 2011. Map of their locations and spatial extensions. The set of cities
analyzed in this article includes very different types of very different types: central cities, port cities and cities on islands. (NB: the municipalities included
in each urban area are those included in the AUDES database. This map was generated using standard packages of the R statistical software for handling
spatial data. The vector layer of the Spanish municipalities boundaries is available under free licence on multiple websites, e.g. gadm.org.).
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(d) Probability of friendship
Figure 2: Distribution of home distances between (a) friends and (b) all users. (c) Distance between 200 world’s largest cities. (d)
Probability of friendship as a function of distance when one accounts for non-uniform population density.
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Figure 1: Fraction of check-ins as a function of distance trav-
eled from home. Note the change in slope at around 100km.

maximum likelihood [3] and note a clear distinction in the power
law exponents (1.7 vs 0.9) at around the 100km mark. Another in-
teresting observation is that the distributions are extremely similar
for all datasets. While Brightkite and Gowalla include check-ins
from the whole world, cell phone data drops off quicker due to the
small size of the country.

The distinct change of the distribution at the 100km mark can be
explained by the non-uniform population density. We calculate the
distribution of distances between the homes of friends in Fig. 2(a)
and observe a similar kink at around 100km, which shows that the
probability of two friends living a certain distance away decreases
quickly at first but then slows down after the distance between the
homes increases above 100km. Moreover, if we examine the distri-
bution of distances between homes of random pairs of users in Fig.
2(b) we note an even stronger change around the 100km mark. As
the number of pairs of people living closer than 100km decreases
quickly with the distance, the distribution increases/flattens after
the 100km mark. This abrupt change at 100km can be explained
by the fact that users are geographically non-uniformly spread over
the Earth and that humans cluster in cities. Interestingly, this sug-
gests that around 100km is the typical human radius of “reach” [26]
as it takes about 1 to 2 hours to drive such distance. For example,
Fig. 2(c) shows distribution of distances between 200 of the world’s
largest cities. The distribution of city distances follows a qualita-
tively similar pattern as the distances between pairs of users. We
correct for this geographic non-uniformity and calculate the prob-
ability that a user has a friend at particular distance in Fig. 2(d).
Now the kink at 100km disappears and the probability of friendship
drops as a power law with an exponent of around 0.85 [1, 24]. This
is interesting as it demonstrates that the kink at 100km is not due
to some inherent property of our social interactions but is rather the

effect of non-uniform population density, where human population
clusters in circles that are more than 100km apart.

3. FRIENDSHIP AND MOBILITY
So far, we examined how far from their homes people tend to

travel and investigated the presence of the kink at the 100km mark.
Now, we focus on the interaction of the person’s social network
structure and their mobility.

Moving close to a friend’s home. We begin by investigating the
sociability of human movement by measuring how likely is person
A to travel close to the home of her friend B. We aim to understand
how the location of A’s friend B affects movement of A. We ex-
amine the fraction of check-ins that are in the vicinity of B’s home.
Intuitively we expect that people are more likely to move to a place
in which they have friends, and that this likelihood decreases as the
distance of travel increases. So far we saw that most of our friends
live geographically close to us, and thus we would expect that they
impact our movement the most. However, as we will see later, this
is not the case.

To quantify this effect we proceed as follows. We say that user
A “visits” her friend B if A checks-in within radius r of B’s home,
and we aim to compute Pdata(d), which measures the probability
that A visits a friend given that A travels distance d from home.
Quantity Pdata(d) is simply the fraction of A’s check-ins at dis-
tance d from her home that occur in radius r (we set r = 25km) of
one of A’s friends. We experimented with various values of r and
observed consistent behaviors.

Solid lines in Figure 3(a) plot Pdata(d), the fraction of friend
visiting check-ins as a function of the distance traveled from home.
Notice that both Gowalla and Brightkite exhibit similar behavior
in that the probability of visiting a friend’s home levels off to a
value of 0.3 after the 100km mark. This means that if a user trav-
els more than 100km from her home, then there is a 30% chance
that they will jump close to an existing friend’s home. Moreover,
we observe that the probability of visiting a friend’s home remains
constant after the 100km mark. The number of possible locations
one can visit increases with the distance, and the number of friends
decreases with the distance as well. This suggests that the proba-
bility of visiting a friend would decrease with the distance traveled
(more possible locations to visit and less friends, and thus smaller
probability of visiting a friend). Interestingly, we observe that the
probability of visiting a friend remains constant as a function of
distance traveled. We consider this surprising as it suggests that the
effect friends have on the our movement grows with their distance
from us. To more precisely establish this we next compare the ef-
fect of friends on our movement to a null model that ignores the
social network structure, and we then establish a causal relation-
ship between the social network and mobility.

We compare the fraction of friend visiting check-ins Pdata(d)
to a null model, Pnull(d), which quantifies the probability that a

Midnight

6 PM
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(a) Spatial model (b) Temporal model
Figure 6: (a) Check-ins of a user in San Francisco: geographic
distribution of check-ins when in home/work state. (b) Tem-
poral model: distance to the red/blue line from the center is
proportional the prob. of user being in home/work state.

This means that at any point in time a user is either in “home” or
“work” state and P [cu(t)] models the probability distribution over
the state of the user over time. We then maintain the distribution
over possible check-in locations independently for both states.

Temporal component of the PMM model. We model P [cu(t)],
the probability distribution over the state of the user, with a trun-
cated Gaussian distribution parameterized by the time of the day:
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and then

P [cu(t) = H ] =
NH(t)

NH(t) +NW (t)

P [cu(t) = W ] =
NW (t)

NH(t) +NW (t)

where τH is the average time of the day when a user is in the
“home” state, σH is the variance in time of day, and PcH is the
time-independent probability that any given check-in was gener-
ated by the “home” state. It should be noted that special consid-
eration is needed when calculating τH because we are treating the
time of day as cyclical, i.e., 11:59pm and 12:01am are only two
minutes apart. Therefore, τH and τW are calculated in the same
manner as an average of angles about a circle. For example, Figure
7(b) shows the probability distribution over the state (blue:home,
red:work) of the user as a function of the time of the day.

Spatial component of the PMM model. Many previous pa-
pers [12, 2] have used normal distributions to model human move-
ment around a particular point. We adopt this by modeling the
movement when a user is in the home/work state using a 2-dimensional
time-independent Gaussian distribution:

P [xu(t) = xi|cu(t)] =

{

∼ N (µH ,ΣH ) if cu(t) = H
∼ N (µW ,ΣW ) if cu(t) = W

where ΣH , ΣW are the “home”, “work” check-in position covari-
ance matrices. µH and µW are the means of user’s check-in loca-
tions when she is in home and work state, respectively.

Our model is effectively a two-state mixture of Gaussians with
a time-dependent state prior. This means that our model classi-
fies each of the user’s check-ins as either being generated by the
“home” or “work” state. The temporal part of the model governs
the transition between home/work states and then depending on
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Figure 7: Periodic Mobility Model. (a) Check-in locations gen-
erated by home/work state. (b) State distribution over time.

the state geographic location of the check-in is generated the time-
varying mixture of two time-invariant 2-dimensional Gaussian dis-
tributions. Figure 8 shows distribution of user location over time.

Periodic & Social Mobility Model (PSMM). Next, we extend
the Periodic Mobility Model with social network-driven mobility.
We refer to the new model as Periodic & Social Mobility Model
(PSMM). To include the social network information to the model,
we introduce another check-in classification zu(t), where zu(t) =
1 implies the check-in is social (non-periodic) and zu(t) = 0 im-
plies that it is periodic. The PSMM mobility model then becomes:

Pu[x(t) = x] =P [x(t) = x|zu(t) = 1] · P [zu(t) = 1]

+P [x(t) = x|zu(t) = 0] · P [zu(t) = 0]

where P [x(t) = x|zu(t) = 0] is the Periodic Mobility Model.
Given that user u makes a social check-in (i.e., social network

influenced check-in), the probability that u will check-in at a cer-
tain place xi is determined by two factors: how long since a friend,
say w, has checked in, and the distance of w’s check-in to xi. We
model this as follows:

P [xu(t) = xi|z(t) = 1] ∼
∑

(tj ,xj)∈Ju

|tj − t|−α · ||xi − xj ||
−β

where Ju is the set of check-ins by user u’s friends made on the
same day. tj denotes the time and xj is the location of the j-th
checkin by u’s friends. The particular power-law parametric forms
are motivated by the following observations: the probability user u
checking-in ∆t time units after w has checked-in decays as power-
law (Fig. 9(a)) and Fig. 9(b) shows that the distribution of the
distance between two friends at the time of a cell phone call also
decays as power law. From the modeling perspective this means
that if user u performs a social check-in then it will more likely be
close in space and in time to one of her friend’s check-ins.

Fitting PMM and PSMM models. First, we describe how to fit
the parameters of the PMM independent of the social network and
then consider the fitting of social check-ins. The parameters of the
model are fitted using Expectation-Maximization (EM). To begin,
each check-in is randomly labeled as either a “home” or “work”
check-in. At each iteration, first the model parameters µ, Σ, τ ,
and σ are fitted by the current labeling using maximum likelihood
estimation. This parameter fitting is known as the “E-step.” All of
these parameters MLE’s have closed-form solutions, making this
step very efficient. Once the model parameters have been fitted, the
check-ins are reassigned to the state (home/work) according to the
new model density function. This labeling reassignment is known
as the “M-step”. With this new check-in labeling, the “E-step” is
once again performed, and iterations continue until convergence.
Since EM is known to only converge to local optima, we re-run
the algorithm using several different random initial assignment of
check-in labels and take the fit with the highest likelihood.
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Figure 8: Periodic Mobility Model: Probability density of user location over time as user transitions from “work” to “home”.
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PMM has 18 parameters: 4 parameters for temporal model (mean
and variance of time when the home/work state occurs), 12 for the
spatial model (two 2-d means and corresponding covariance ma-
trices) and 2 parameters for the social model (time and distance
decay). In order to prevent overfitting we use several regulariza-
tions: we impose a minimum singular value of 10−7 on Σ (usually,
this value is naturally several orders of magnitude larger), and we
bound the temporal variance σ to be above 10−4.

We fit PSMM as follows. We train the original PMM model
where we allow a check-in to be classified as “home”, “work” or
“outlier” (i.e., social) check-in. Thus we assume that check-ins
that are not fit well with the periodic model are the result of social
activity. We then fit the social model to these “outlier” check-ins.
Overall, 10%-30% of all check-ins are classified as social check-
ins. The relabeling of the social check-ins and the fitting of the
model parameters α and β is done for each user through EM.

5. EXPERIMENTAL EVALUATION
In the following section, we evaluate the proposed PMM and

PSMM models on all three datasets. In particular, we are interested
in the predictive performance of the models, i.e., given the time of
the day we aim to as accurately as possible predict the geographic
location of the user. We consider three evaluation metrics and three
strong baseline location prediction methods for comparison.

Evaluation metrics. To compare different mobility models, we
use the following evaluation metrics. First, we consider the average
log-likelihood of the check-ins in the unseen test set. This measures
how well the test set fits the model. The second metric we consider
is predictive accuracy, i.e., given the time of day of a check-in in the
test set, how accurately can each model predict the exact location
of the check-in. For example, accuracy of 0.5 means that 50% of
the time the model correctly predicts the exact check-in location
(out of all known locations). Accuracy is a very harsh metric. For
example, if a model would always predict the true location with
exactly 1 meter error, the accuracy of such model would be zero.
The third performance metric we consider is the Expected Distance
Error, which can be considered a soft version of accuracy in that

it does not insist on predicting the exact location, and it takes into
account the spatial proximity of predictions to actual check-ins. We
define Expected Distance Error as follows. For a given check-in in
the test set, we measure expected distance between the check-in
and a check-in generated from the model’s probability distribution:

d(P ) =
1

|Cte|

∑

c∈Cte

EP (x) [||xc − x||]

=
1

|Cte|

∑

c∈Cte

∫

x

||xc − x|| · P (x)dx.

Since it is computationally infeasible to calculate the exact ex-
pected distance error across each point on the entire globe, we com-
pute the error over all locations ever checked-in by the user.

One issue with this metric is that it does not consider the typi-
cal distance a user travels. Thus, using the expected error distance
metric to compare the performance of a model across two different
users is uninformative if the two users travel on different scales.
For example, if user typically travels 1,000km then an average dis-
tance error of 10km is much more acceptable than the same error
for someone who typically travels only 20km. To correct for this
we normalize the error by the radius of gyration [12], which is the
average distance a user travels on a particular day. For the expected
distance error of each user, we divide it by the user’s radius of gy-
ration for that particular day of the week, creating the relative ex-
pected distance error.

Baseline models. We also consider three non-trivial baseline
models for comparison. The first baseline, which we refer to as the
Most Frequented Location Model (MF) assigns the probability of a
user checking-in at a location xc during a given hour of the day hc

as the fraction of previous check-ins during that hour hc that were
at location xc. More precisely, let Cu be the set of all check-ins of
user u, then the Most Frequented Location Model is

PM [xu(t) = x|t ∈ h] =
|{c|c ∈ Cu, xc = x, hc = h}|

|{c|c ∈ Cu, hc = h}|
.

Despite its simplicity, this model is a very strong baseline. For ev-
ery hour of the day the MF predicts the most likely (most often
checked-in) location of a particular user. The model is also very in-
tuitive as it imitates the following reasoning: Assume that you are
asked to guess the location of a friend at 2pm on a Wednesday. If
you knew their place of work, you would be able to pin point them
with a high level of certainty. Similarly, if you knew the location
of your friend’s most frequented happy hour spot, locating them at
6pm on a Friday would be easy as well. In fact, if a user is per-
fectly periodic, then as |Cu| → ∞, PM will converge to the true
underlying model. What this model lacks (and what our model cor-
rects) is that it does not consider distance or the spatial proximity
of locations.

The second baseline, the Gaussian Model (G), has been proposed
by Gonzales et al. [12]. It models human movement as a stochastic
process centered around a single point. For a given day of the week,
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(Fig. 3a). Applying the same computational technique to locate
and quantify effective spatial subdivisions, we find that removing
short-distance traffic has profound consequences for the spatial
structure and coherence of divisions. We consistently find three
independent modules that latitudinally split the US. As these three
modules remain largely spatially coherent, we conclude that
intermediate traffic inherits the role of short range mobility in
generating spatial coherence. Although the removal of short links
represents a substantial modification of the network, bootstrapping
the original network randomly by the same amount (see Text S1)
has little impact on the border structure depicted in Fig. 2d. We
conclude that short- to intermediate-distance mobility is a key
factor in shaping effective borders.

Comparison to Gravity Models. We also investigate
whether the observed pattern of borders can be accounted for
by the prominent class of gravity models [29–31], frequently
encountered in modeling spatial disease dynamics [31]. In these
phenomenological models it is assumed that the interaction
strength wij between a collection of sub-populations with
geographic positions xi, sizes Ni, and distances dij~Dxi{xj D is
given by
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Figure 2. Effective subdivisions and borders in the United States. (a) Subdivisions determined by maximizing modularity Q share similar
values of Q (top to bottom: Q~0:6807, 0:6808, and 0:6804, all in k~14 modules). In all maps the modules are spatially compact. Although these
solutions share features, they exhibit significant differences in the module structure. (b) Ensemble statistics of geographic subdivisions for a set of
N~1,000 partitions. The number of modules k in each subdivision is narrowly distributed around 13 (grey bars), and so are the conditional
distributions of modularity (superimposed whisker plots). The ensemble mean is Q~0:674+0:0026. (c) Distribution of the linear extensions of the 48
states (mean 329+125 km) and the geographic modules in the effective subdivision (644+215 km). (d) Effective borders emerge from linear
superposition of all maps in the ensemble (blue lines). Intensity encodes border significance (i.e. the fraction of maps that exhibit the border). Black
lines indicate state borders. Although 44% of state borders coincide with effective borders (left pie chart), approximately 64% of effective borders do
not coincide with state borders. These borders are statistically significant features of the ensemble of high modularity maps, they partially correlate
with administrative borders, topographical features, and frequently split states. (e) Close-up on the Missouri region, showing the effective border
between Kansas City and St. Louis that divides the state. (f) Close-up on the Appalachian Mountains with corresponding border, which extends north
to split Pennsylvania. This border is the strongest in the map.
doi:10.1371/journal.pone.0015422.g002
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Figure 1. Partitioning of large European countries based on telephone call networks. Left column: Community detection (first level) of
telephone call networks of (A) France, (C) UK, (E) Italy. The black lines show the 22, 11, and 20 administrative regions (NUTS1 for UK, NUTS2 for the
other countries), respectively, the colored areas show the corresponding 21, 16, 22 level 1 regions found by applying the modularity optimization
algorithm on the country-wide phone call networks. All detected regions are cohesive although some of the distinct colors used may appear similar.
Right column: Community detection (second level) within all network partitions from the first level, of (B) France, (D) UK, (F) Italy. For visual clarity
here we present the second level communities grouped into first level communities in an exploded view. Colors of detected subregions only apply
inside their respective level 1 partitions, again all detected subregions are cohesive although some of the distinct colors used may appear similar. For
France we also show the official NUTS2 borders which considerably match well the second level partitioning.
doi:10.1371/journal.pone.0081707.g001
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Figure 2: The municipal borders (in black) and Livehoods for South Side.

they go to for entertainment, where they go for food,
where they go because they enjoy the walk.

The connection the algorithm discovered between these two
areas went both ways. As Jessica (a LH3 resident) explains
“there are some places in Polish Hill we hang out a lot that
feel more like our neighborhood.”

The South Side: The South Side Flats neighborhood of
Pittsburgh lies along the southern border of the Mononga-
hela River. The main business district in the South Side is
along Carson Street, which is one of the top destinations
for nightlife in the city, as it has a high density of bars and
restaurants. Moreover, occupying a large area on the eastern
end of the neighborhood, there is a recently built mixed-use
development called South Side Works consisting of an open
air shopping mall with national vendors, several office build-
ings, and luxury condos.

Our clustering algorithm split South Side Flats into four
Livehoods (see Figure 2). LH7 is the area along Carson be-
tween Liberty Bridge and 18th Street, LH8 is the area be-
tween 18th and 24th Street, and LH9 is the area east of 24th
Street. The fourth area, LH6 is a shopping plaza north of
LH8.

In our interviews, we found strong support of the Live-
hoods clustering for South Side. Particularly strong was the
evidence supporting the split between the western part of
South Side Flats (LH6, LH7 and LH8), and the eastern por-
tion around South Side Works (LH9). We asked every sub-
ject who was familiar with South Side to indicate any places
where they notice a “shift in feel,” and nearly all participants
indicated that South Side Works, which begins just to the
east of the Birmingham Bridge, is distinctly different from
the rest of South Side Flats.

When we showed the municipal borders of South Side
to Ashley, a 25 year old who works at a local radio sta-
tion, she was surprised, commenting “Oh! So that is just all
one big neighborhood. I would have definitely thought there

is a division near the Birmingham [Bridge].” Later, when
we showed the Livehoods mapping and asked her about the
boundary between LH8 and LH9, she exclaimed:

Ha! Yes! See, here is my division! Yay! Thank you al-
gorithm! ...I definitely feel where the South Side Works
and all of that is, is a very different feel.

This “different feel” around South Side Works was identified
by many of the subjects. Sara, a 30 year old video game
designer who lives and works in South Side describes South
Side Works as “more up-scale” and having “more chains”
than the western part of South Side, which she describes as
having more “individual stores.”

Although nearly everyone understood and could explain
the differences between LH8 and LH9, there was less agree-
ment about whether the split between LH7 and LH8 was
valid. For instance, Sara mentioned that the difference be-
tween LH8 and LH9 made sense to her, but she did not
know the difference between LH7 and LH8. On the other
hand, Kara, who has lived both on the western end of Car-
son (LH7) and on the more eastern parts (LH8) noted that it
feels “a bit more isolated” around 23rd making her feel “less
safe.” She elaborated:

Whenever I was living down on 15th Street [LH7] I
had to worry about drunk people following me home,
but on 23rd [LH8] I need to worry about people trying
to mug you... so it’s different. It’s not something I had
anticipated, but there is a distinct difference between
the two areas of the South Side.

As Kara notes, although the difference is not very promi-
nent, the division by the algorithm displays a subtle differ-
ence that can be attributed to the type of people and business
in each of these parts.

Moreover, those that did notice a shift between LH7 and
LH8 described the street as being narrower and the buildings
closer together in LH7. Zach, who is a 30 year old technol-
ogy consultant and who used to be a cab driver in Pittsburgh
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Figure 1: The municipal borders (black) and Livehoods for Shadyside/East Liberty (Left) and Lawrenceville/Polish Hill (Right).

Lawrenceville and Polish Hill: Lawrenceville, one of
Pittsburgh’s largest neighborhoods, had been going through
massive changes and development in recent years. Our inter-
viewees were conflicted about the cohesiveness of the area.
For some, it is one big neighborhood encompassing more
than 20 blocks whereas others notice distinct subsections
carrying different characteristics.

The city itself subdivides Lawrenceville into three differ-
ent municipal neighborhoods: Upper Lawrenceville, Cen-
tral Lawrenceville, and Lower Lawrenceville. And although
these areas are all connected by Butler street, the character
of each of them is different. As Daniel, a 43 year old resident
of Lawrenceville, explains:

The look isn’t different, but the vibe and the feel are
very different. Middle Lawrenceville from 40th un-
til the cemetery that is where the first people were
moving in and fixing up the area... And then, Lower
Lawrenceville, is kind of picking up right now and then
Upper Lawrenceville it’s been like the really rough area
with gangs and drugs.

Our algorithm found similar divisions, breaking the area
into three Livehoods with boundaries closely correspond-
ing to those of the municipal map (see Figure 1 Right). The
border between LH3 and LH4 was situated exactly on the
40th St. Bridge, the border between Lower and Cental Law-
erenceville. The division between LH4 and LH5 was placed
on 48th street, three blocks away from the municipal border
between Central an Upper Lawrenceville on 51st street.

We found strong evidence from our interviews supporting
the Livehood clusters based on factors such as property val-

ues, crime rates, business types, and general feel. As Clau-
dia, a 54 year old journalist, notes:

I think middle [Central] Lawrenceville is the most de-
sirable or well rooted. Where the better housing stock
is. LH3 is definately newer. LH5 pretty much was left
alone... There are parking lots and convenience stores
around 40th that when you hit those you think ‘I have
left something behind.’ And then you are in another
part of Lawrencevile because you passed a bridge and
there’s not a lot of connective tissue at some of these
intersections.
Several of the interviewees did not agree with the sep-

aration of Lower and Central Lawrenceville. For them,
the separation is arbitrary and it is based mainly on lo-
cal businesses’ interests. Since Lawrenceville was perceived
as a dangerous area, a group of business owners in Lower
Lawrenceville decided to brand the area as “LoLa” and mar-
ket it as a stand alone destination for unique shops and
restaurants.

Another point of interest is in the spilling of Lower
Lawrenceville into the adjacent neighborhood of Polish Hill
in LH3. At first glance, this grouping seems odd and not fea-
sible. Polish Hill is a very small neighborhood that is sepa-
rated from Lower Lawrenceville by train tracks and a bus
way in addition to geographic barrier of being located on an
hill. But this grouping seemed natural to Roger, a 47 year
old resident of Polish Hill who said:

I think it’s pretty accurate... I think that’s how some
of our residents identify with Lower Lawrenceville be-
cause of their activities and their perception. Where
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single, spatially de-coherent urban community and disconnected
suburban modules is appropriate and effective geographic borders
are difficult to define in this case.

Although previous studies identified community structures in
long-range mobility networks based on topological connectivity
[19,20], this example illustrates that the traffic intensity resulting

Figure 1. Human mobility network derived from bank note fluxes. (a) Multi-scale human mobility is characterized by dominant short range
and significant long-range connectivity patterns. The illustrated network represents a proxy for human mobility, the flux of bank notes between 3,109
counties in the lower 48 United States. Each link wijw0 is represented by a line, the color scale encodes the strength of a connection from small (dark
red) to large (bright yellow) values of wij spanning four orders of magnitude. (b) A simplified illustration of generic traffic patterns between and within
metropolitan mobility hubs (A and B), with two types of connections wL and wD, local traffic connecting individual hubs to smaller nodes in their
local environment (blue) and long distance links connecting the hubs (red). Depending on the ratio of local and long range flux magnitude, two
qualitatively different modularizations are plausible. If wL&wD, two spatially compact communities are meaningful (left), whereas if wL%wD, the
metropolitan centers belong to one yet geographically delocalized module (orange), effectively detached from their local environment, yielding three
communities altogether (right). (c) Multi-scale mobility networks are strongly heterogeneous as reflected by the functions p(d), p(w), and p(f ), the
relative frequencies of distances dij , link weights wij and vertex flux fi~

P
j wij that all are distributed over several orders of magnitude.

doi:10.1371/journal.pone.0015422.g001
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(Fig. 3a). Applying the same computational technique to locate
and quantify effective spatial subdivisions, we find that removing
short-distance traffic has profound consequences for the spatial
structure and coherence of divisions. We consistently find three
independent modules that latitudinally split the US. As these three
modules remain largely spatially coherent, we conclude that
intermediate traffic inherits the role of short range mobility in
generating spatial coherence. Although the removal of short links
represents a substantial modification of the network, bootstrapping
the original network randomly by the same amount (see Text S1)
has little impact on the border structure depicted in Fig. 2d. We
conclude that short- to intermediate-distance mobility is a key
factor in shaping effective borders.

Comparison to Gravity Models. We also investigate
whether the observed pattern of borders can be accounted for
by the prominent class of gravity models [29–31], frequently
encountered in modeling spatial disease dynamics [31]. In these
phenomenological models it is assumed that the interaction
strength wij between a collection of sub-populations with
geographic positions xi, sizes Ni, and distances dij~Dxi{xj D is
given by
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Figure 2. Effective subdivisions and borders in the United States. (a) Subdivisions determined by maximizing modularity Q share similar
values of Q (top to bottom: Q~0:6807, 0:6808, and 0:6804, all in k~14 modules). In all maps the modules are spatially compact. Although these
solutions share features, they exhibit significant differences in the module structure. (b) Ensemble statistics of geographic subdivisions for a set of
N~1,000 partitions. The number of modules k in each subdivision is narrowly distributed around 13 (grey bars), and so are the conditional
distributions of modularity (superimposed whisker plots). The ensemble mean is Q~0:674+0:0026. (c) Distribution of the linear extensions of the 48
states (mean 329+125 km) and the geographic modules in the effective subdivision (644+215 km). (d) Effective borders emerge from linear
superposition of all maps in the ensemble (blue lines). Intensity encodes border significance (i.e. the fraction of maps that exhibit the border). Black
lines indicate state borders. Although 44% of state borders coincide with effective borders (left pie chart), approximately 64% of effective borders do
not coincide with state borders. These borders are statistically significant features of the ensemble of high modularity maps, they partially correlate
with administrative borders, topographical features, and frequently split states. (e) Close-up on the Missouri region, showing the effective border
between Kansas City and St. Louis that divides the state. (f) Close-up on the Appalachian Mountains with corresponding border, which extends north
to split Pennsylvania. This border is the strongest in the map.
doi:10.1371/journal.pone.0015422.g002
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single, spatially de-coherent urban community and disconnected
suburban modules is appropriate and effective geographic borders
are difficult to define in this case.

Although previous studies identified community structures in
long-range mobility networks based on topological connectivity
[19,20], this example illustrates that the traffic intensity resulting

Figure 1. Human mobility network derived from bank note fluxes. (a) Multi-scale human mobility is characterized by dominant short range
and significant long-range connectivity patterns. The illustrated network represents a proxy for human mobility, the flux of bank notes between 3,109
counties in the lower 48 United States. Each link wijw0 is represented by a line, the color scale encodes the strength of a connection from small (dark
red) to large (bright yellow) values of wij spanning four orders of magnitude. (b) A simplified illustration of generic traffic patterns between and within
metropolitan mobility hubs (A and B), with two types of connections wL and wD, local traffic connecting individual hubs to smaller nodes in their
local environment (blue) and long distance links connecting the hubs (red). Depending on the ratio of local and long range flux magnitude, two
qualitatively different modularizations are plausible. If wL&wD, two spatially compact communities are meaningful (left), whereas if wL%wD, the
metropolitan centers belong to one yet geographically delocalized module (orange), effectively detached from their local environment, yielding three
communities altogether (right). (c) Multi-scale mobility networks are strongly heterogeneous as reflected by the functions p(d), p(w), and p(f ), the
relative frequencies of distances dij , link weights wij and vertex flux fi~
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(Fig. 3a). Applying the same computational technique to locate
and quantify effective spatial subdivisions, we find that removing
short-distance traffic has profound consequences for the spatial
structure and coherence of divisions. We consistently find three
independent modules that latitudinally split the US. As these three
modules remain largely spatially coherent, we conclude that
intermediate traffic inherits the role of short range mobility in
generating spatial coherence. Although the removal of short links
represents a substantial modification of the network, bootstrapping
the original network randomly by the same amount (see Text S1)
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• Very different network than gravity models

• Without short- and medium-distance links, results are poor

in which the exponents a,b,m§0 are parameters. Although their

validity is still a matter of debate, gravity models are commonly

used if no direct data on mobility is available. The key feature of a

gravity model is that wij is entirely determined by the spatial

distribution of sub-populations. We therefore test whether the
observed patterns of borders (Fig. 2d) are indeed determined by
the existing multi-scale mobility network or rather indirectly by the
underlying spatial distribution of the population in combination
with gravity law coupling. Figure 3f illustrates the borders we find
in a network that obeys equation (2). We generate this network
such that the first order statistical similarity to the original
networks is maximized, which sets the parameters a,b and m (see
Text S1). Comparing this model network to the original multi-
scale network we see that their qualitative properties are similar,
with strong short range connections as well as prominent long
range links. However, maximal modularity maps typically contain

only five subdivisions with a mean modularity of only !QQ~0:4791.
Because borders determined for the model system are strongly
fluctuating (maps in Fig. 3e), they yield much less coherent large
scale patches. However, some specific borders, e.g. the
Appalachian rim, are correctly reproduced in the model.
Because the model system produces significantly different
patterns (see Text S1 for statistics), we conclude that the sharp
definition of borders in the original multi-scale mobility network
and the pronounced spatial coherence of the building blocks are
an intrinsic feature of the real multi-scale mobility network and
can not be generated by a gravity model that has a maximum first
order statistical overlap with the original mobility network.

Effective Borders and Shortest Path Trees. The proposed
method successfully extracts the structure of geographic borders

inherent in multi-scale mobility networks. Bootstrapping the
network indicates that these structures are surprisingly stable in
response to perturbations of the network, but neither the
modularity measure nor the stochastic algorithm we use to
discover partitions provide specific information about the
substructures in the network that make these borders so robust.
What feature of the network, more specifically which subset of
links if any, generates the observed borders? In order to address
this question and further investigate the structural stability of
the observed patterns, we developed a new and efficient
computational technique based on the concept of shortest-path
trees (SPT) [32]. Like stochastic modularity maximization, this
technique identifies a structure of borders that encompass spatially
coherent regions (Fig. 4c), but unlike modularity this structure is
unique. More importantly, it identifies a unique set of connections
in the network, a network backbone, that correlates strongly with
the observed borders. The shortest-path tree Ti rooted at node i is
the union of all shortest paths originating at i and ending at other
nodes. The shortest path between two nodes is the path that
minimizes the effective distance d~

P
1=wij along the legs of the

path. Based on the set of SPTs Ti we compute an effective distance
between nodes i and j by computing the shortest path tree
dissimilarity (SPTD), i.e.

dij~z(Ti,Tj) ð3Þ

Details of the function z that quantifies differences of trees are

provided in Text S1. If Ti~Tj we have z(Ti,Tj)~0, whereas

z(Ti,Tj)~N for completely different trees. In our data the z values
range from 2 to 240. We compute a series of borders induced by

Figure 3. Comparative analysis of effective borders in two artificial systems: a modified mobility network deprived of short distance traffic
(a–c), and a gravity model for human mobility (d–f). (a) A subnetwork of the original system (Fig. 1a) in which all links with geographic length
dv400 km are removed (the inset depicts the complementary, removed subnetwork). (b) Two generic partitions of this long-range network,
consisting of only three modules that do not exhibit sharply defined geographical borders. (c) The resulting border structure (red lines) exhibits no
significant overlap with the borders obtained from the original multi-scale system. Borders of the original system and overlap are depicted in blue
and green, respectively. (d) A gravity model network as defined by Eq. (2). Parameters a~b~0:96 and m~0:3 have been chosen to maximize first-
order statistical similarity to the original data. (e) Although qualitatively the network in (d) shares features with the original network (Fig. 1a), generic
partitions of the gravity model network are structurally different, typically exhibiting fewer modules per partition, in different locations and with less
spatial compactness. (f) The border structure of the gravity network (red) partially coincides with the borders in the original data (blue), but not
significantly. The overlap is shown in green, for significance tests see Text S1. (g) First order statistics of the two artificial networks in comparison to
the original network. The functions p(d), p(w), and p(f ) for the long-range network in (a) (green), the gravity model network in (d) (red), and the
original mobility network (Fig. 1a, blue). The dotted line indicates d~400 km.
doi:10.1371/journal.pone.0015422.g003
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traffic gives an indication of how tightly the thousands of different
parts of Great Britain are connected, pixel by pixel. Please note
that connection strength was calculated using total call time, hence
taking into account the local population density.

Results and Discussion

The question naturally arises: What is the best way to group
these pixels into larger regions? A similar question has been a focus
of network research over the past decade; there one seeks the best
way to partition a network into separate, non-overlapping
communities [13–18]. The leading approach is based on
optimizing the network’s ‘‘modularity’’ [15]. High modularity
values occur when the network is subdivided such that there are
many links within communities and few between them, as
compared to a randomly generated network with otherwise
similar characteristics.

However, we are not trying to partition the network itself, but
rather to use the network’s characteristics to partition the
geographic space underneath the network’s topology while
guaranteeing spatial adjacency, one of the essential features of a
geographic region.

Nonetheless, we felt it might be instructive to ignore the
adjacency constraint initially, to see what sorts of regions would be
obtained. Following Newman’s approach as a baseline, we applied
his spectral optimization algorithm [16]. Note that it was
important to include loop edges (as proposed in [19]) in our
analysis as it allowed us to correctly represent the human network
from which we started (see Text S2).

After two iterations of the algorithm, a surprisingly accurate
map of the Greater London region emerged, along with an area
corresponding to Scotland, with just a few detached pixels
scattered across the rest of Great Britain (Fig. 2 (a) and (b)).

With subsequent iterations the modularity increased, ultimately
converging to a maximum of 0.58, indicative of a good
partitioning compared to the randomized network, as mentioned
in [15,20]. The resulting subdivision had 23 communities, 13 of
which were clearly delineated geographically, although some
scattered pixels and fuzzy boundaries remained. To determine if
these artefacts were due to noise produced by the heuristics of
spectral partitioning, we next fine-tuned the spectral partitioning
algorithm in a manner suggested by Newman [16], iteratively
moving pixels from one region to another to maximize overall
modularity (see Text S3). When applied to our data, this process

Figure 1. The geography of talk in Great Britain. This figure shows the strongest 80% of links, as measured by total talk time, between areas
within Britain. The opacity of each link is proportional to the total call time between two areas and the different colours represent regions identified
using network modularity optimisation analysis.
doi:10.1371/journal.pone.0014248.g001
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removed the fuzzy boundaries, attached the scattered pixels to
their nearest neighbours, and increased the modularity to 0.60.

Figure 2(c) shows the resulting map. Its regional cohesiveness is
unexpected: we began by looking at the human network as a
topological entity with no geographical constraints, but uncovered
clear regions in space that respect spatial adjacency. Apparently
the telecommunication links between individuals—and the
interpersonal transactions that they capture—are so intertwined
with geographical space that partitioning at a network-topological
level produces a very accurate partitioning of geographic space.
Compared to previously suggested distance-decay models of
telecommunication in space [21–24], our technique for partition-
ing shows that not only population distribution in space but also
regional boundaries affect the patterns of communication. They
also seem to confirm the spatial cohesiveness of partitions defined
on mobility networks at an aggregate level, such as airplane
connections and banknote movement [25,26].

Before embarking on the detailed examination of our regions,
however, we should check how stable our boundaries are. As it has
been shown [13,27], a modularity function such as ours is likely to
have exponentially many local maxima, and these maxima
typically have different clustered structures. Our partition is likely
not to be the global maximum and there are probably alternative
local maxima with a high modularity score. What would the
corresponding boundaries be? To find out we implemented several
modularity partitioning methods (see especially Figure S1 and
Text S3). The results are reassuring: there is indeed some variation
along the boundaries, but we always find cohesive regions centred
approximately in the same place. Also, if we intersect all regions
obtained with the different methods, we find 11 stable ‘‘cores’’ that
are always separated from each other by ‘‘peripheral’’ regions that
lie at the boundaries and have somewhat ambiguous associations
(Fig. 3). It should be noted that these ‘‘cores’’ highlight very

densely populated areas and contain the great majority of Great
Britain’s population (85%). Conversely the peripheral regions are
very sparsely inhabited. The regional partitioning is also robust
with respect to uncertainty in the data, as proven by subsampling
(see Text S4), and seems indicative of a highly modular network
[20,27], as seen by comparison with many null models that have
an average modularity score of less than 0.02 (see Text S5). We
recognize the limits of resolution due to the modularity definition
[28]. As we are interested in detecting large regions comparable to
the official administrative ones, our analysis did not suffer of this
issue. However, multi-resolutions methods could be used to detect
smaller robust communities (see [17]).

Another interesting point is that the core map based on human
interactions divides Great Britain into approximately the number
of ‘‘official’’ Nomenclature of Territorial Units for Statistics 1
(NUTS) British regions (11) —with boundaries that approximately
coincide with the traditional ones (Fig. 3). Many of the telecom
regions—those corresponding to Scotland, South West, London
and the East of England—closely match the forms of historically
and administratively important regions. In fact, on average about
80% of pixels fall within a corresponding (by largest overlap)
telecom region. While not surprising, this finding seems to
corroborate our method: we would indeed expect an agreement
between the administrative boundaries and those found from
human interaction, as they probably evolved together, over many
centuries of mutual interplay—cohesive patterns within society
promoting change in administrative boundaries and the latter, in
turn, affecting human interaction.

The most obvious difference between the two maps is that
Wales, and to a lesser extent Yorkshire, seem to have been
incorporated into regions dominated by the major cities of the
West and East Midlands regions, respectively. Moreover, we have
also ‘‘found’’ a new region developing to the west of London. The

Figure 2. Defining regions through the spectral modularity optimization of telecommunications networks. a - even with just three
regions we obtain a total modularity of 0.31, indicating a fairly good network partitioning. b - the final partitioning of Great Britain yields a modularity
of 0.58. c - further fine tuning according to the process suggested by Newman [16] increases the modularity to 0.60.
doi:10.1371/journal.pone.0014248.g002

Borderline

PLoS ONE | www.plosone.org 3 December 2010 | Volume 5 | Issue 12 | e14248

GEOGRAPHIC  ‘COMMUNITIES’
CELL PHONE DATA



• Ratti, Sobolevsky, Calabrese, Andris, 
Reades, Martino, Claxton, Strogatz, 
"Redrawing the Map of Great 
Britain from a Network of 
Human Interactions", PLoS One, 
5(12):e14248, 2010

first finding supports hypotheses that have long circulated in the
transport and regional studies literature: detailed commuting data
from the 2001 census was used to generate regions where 95% of
trips are internal to that region, finding that Wales, in spite of its
unique cultural and linguistic heritage, is well integrated with its

English neighbours to the East [29]. Also, the resulting northern
and southern Welsh regions match extremely well with our maps.
The second finding, of a new region just west of London,
corroborates an earlier study of a ‘Western Crescent’ of high-tech
activity [30]: a cohesive area that generally scores extremely well

Figure 3. The core regions of Britain. By combining the output from several modularity optimization methods we obtain the results shown in
this figure. The thick black boundary lines show the official Government Office Regions partitioning together with Scotland and Wales. The black
background spots show Britain’s towns and cities, some of which are highlighted with a label.
doi:10.1371/journal.pone.0014248.g003
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(d) Call-time leaving the county and
county population

Fig. 1. Home call-time network scaling with county population

where fact(i, j,hi,hj) is the interaction volume for peo-
ple with home location in county hi which are in county
i at the time of the call, to people with home location
in county hj and that are in county j at the time of the
call. Of course the sets Ho(i, j) and Ht(i, j) depend on
the considered counties i and j.

• Displacement network. The interaction strength is nor-
malized by the market share of the carrier in the home
county of the users:

fnmob(i, j) = fmob(i, j)
Pi

Ci

IV. EFFECT OF POPULATION AGGLOMERATION AND
DISTANCE ON THE INTERACTIONS

We start our analysis of the interplay between geography
and interactions by looking at the effect of county population
and distance on the communication and mobility networks.

A. Scaling with county size

The level of communication involving a county scales
approximately linearly with the population of the county, as
shown in Figure 1, with a slight super-linear scaling found in
the total call time within the county (calls where both caller
and callee live in the same county). Interestingly, the scaling
exponent (1.14) is very close to the one found in many other
super-linearly scaling indicators for cities [20].

We compared the county self interaction scalings with
county size for different communication and mobility graphs.
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Fig. 2. Distance decay comparison - Communication networks

Results show that all slopes are super-linear: 1.11 for displace-
ment, 1.14 for home location and 1.26 for actual location.
This super-linearity might be explained by an increase in the
number of people spending time in more populated counties
and an increase in the number of interactions for people
spending time in more populated counties. Unfortunately our
data does not allow the separation of these two effects.

B. Decay with distance
It has been recently shown that US migration probability

decreases linearly with the Euclidean distance [21]. Call
number was also discovered to decrease with the square of
the distance between cities in Belgium [14]. We therefore
investigate whether distance has a strong effect on the level
of communications between US counties. All measures of
interaction have a similar behavior (see Figure 2):

• start approximately flat for distances below 10km;
• decay with the distance, for distances below 1000km;
• become approximately flat over 1000km.
By comparing the absolute value of the slopes (computed

within the 10-1000km interval), we can evaluate the different
relationships between distance and social interactions. Joining
calls by actual location yields a stronger decay with distance
(1.92), compared to joining them by home location (1.88).
This implies that distance at call time is usually lower than
distance between users’ home locations. Similar decays are
found by considering SMS instead of call-time.

By looking at the mobility graphs (see Figure 3), we see that
migration seems to be the least affected by distance (slope 1.4),
while commuting the most affected. Displacement and com-
muting have a very close slope (2.01 and 2.16 respectively).

V. NETWORK PARTITIONING

The previous section showed that on average a gravity-like
model seems to represent the measured interactions between
counties well. However, several outliers for which the model
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Fig. 3. Distance decay comparison - Mobility networks

does not predict well can be found. This raises the question
whether better models can be established to characterize the
interaction graph in terms of geographical influence, which
would be better able to highlight the differences in the in-
teraction measurements. For instance, can the impact of state
or region boundaries on the different interaction graphs be
quantified? To try to answer this question, we partition the
graph into communities, and study the relationship between
these communities and state boundaries. To do so, we use the
concept of network modularity as defined below.

Network modularity. Consider a weighted, symmetric net-
work of n nodes, with given weights of edges between node
i to node j denoted by Ai,j. The undirected weights are
calculated as the sum of the directed equivalents. Suppose that
nodes also possess loop edges to themselves, i.e., we assume
that Ai,i 6= 0 is permitted. We refer to the symmetric matrix
A of the values Ai,j as a weighted adjacency matrix of the
network. Each node’s strength is defined as the total weight
of all the edges connected to this node, w(i) =

P
j Aj,i.

Also, the total network adjacency matrix weight is given as
M =

P
i w(i) =

P
i,j Ai,j (here and further

P
i,j denotes

a sum by all pairs of i, j where pairs i, j and j, i for i 6= j
are considered separately while the pair i, i is considered
only once). Consider a suggested partitioning for which c(i)
denotes the index of the community to which node i belongs.
Then we perform our calculations using a modularity function
defined as

Q =
1
M

X

i,j

✓
Ai,j -

w(i)w(j)

M

◆
�(c(i), c(j)), (1)

where the � is the Kronecker delta evaluating to 1 if c(i) =
c(j) and 0 otherwise.

Different methods could be used to partition a network
optimizing the modularity score (see [22], [23]). In this paper
we use the last method proposed in [16] as it showed the most

Fig. 4. Communities structure in the home location network with call-time
weights. Puerto Rico has its own community (not shown).

promising results in partitioning a landline communication
network. Applying the community detection algorithm to the
home location network with call-time weights, we obtain the
partitioning shown in Figure 4. Note that some counties are
not covered by our analysis as CDRs from these areas were not
included in the dataset as the cellular operator does not directly
collect them. As also previously shown for telecommunication
calls in Great Britain [16], communities extracted from a
network of human interactions are generally cohesive, and
follow many state or regional boundaries, see for instance the
New England region3. However some communities do include
a non-adjacent county, which may be due to a low market
share or too few customers in some counties (see for instance
Alabama and Georgia).

As the telecommunication operator’s share and number of
customers vary among the different US counties, the normal-
ization process introduces a bias, as it assumes that a small
percentage of users is able to represent the calling behavior
of the remaining population. If the share or the number of
customers is extremely low, this might not be the case. To
reduce these biases, we decided to introduce two thresholds on
the share and number of customers, in order to remove coun-
ties with insufficient information. The thresholds have been
determined by running the community detection algorithm on
different graphs, varying the market share threshold from 0
to 0.16, and the threshold on the number of customers from
100 to 1000. A county was then defined as anomalous if it is
assigned to a community that is either with cardinality one (the
community has only one member), or if all other community
members are not geographically adjacent4. The effects on the
number of communities and anomalies are shown in Figure 5.

The number of detected communities is roughly constant
on all graphs, while the number of anomalies decreases as we
raise the thresholds. Based on a tradeoff between the suspected
anomalies and keeping as many counties as possible, we define
the two thresholds:

3Colors in the graphs are re-used for visual purposes.
4In practice, we look at the 5 closest counties for which data is available.
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does not predict well can be found. This raises the question
whether better models can be established to characterize the
interaction graph in terms of geographical influence, which
would be better able to highlight the differences in the in-
teraction measurements. For instance, can the impact of state
or region boundaries on the different interaction graphs be
quantified? To try to answer this question, we partition the
graph into communities, and study the relationship between
these communities and state boundaries. To do so, we use the
concept of network modularity as defined below.

Network modularity. Consider a weighted, symmetric net-
work of n nodes, with given weights of edges between node
i to node j denoted by Ai,j. The undirected weights are
calculated as the sum of the directed equivalents. Suppose that
nodes also possess loop edges to themselves, i.e., we assume
that Ai,i 6= 0 is permitted. We refer to the symmetric matrix
A of the values Ai,j as a weighted adjacency matrix of the
network. Each node’s strength is defined as the total weight
of all the edges connected to this node, w(i) =

P
j Aj,i.

Also, the total network adjacency matrix weight is given as
M =

P
i w(i) =

P
i,j Ai,j (here and further

P
i,j denotes

a sum by all pairs of i, j where pairs i, j and j, i for i 6= j
are considered separately while the pair i, i is considered
only once). Consider a suggested partitioning for which c(i)
denotes the index of the community to which node i belongs.
Then we perform our calculations using a modularity function
defined as

Q =
1
M

X

i,j

✓
Ai,j -

w(i)w(j)

M

◆
�(c(i), c(j)), (1)

where the � is the Kronecker delta evaluating to 1 if c(i) =
c(j) and 0 otherwise.

Different methods could be used to partition a network
optimizing the modularity score (see [22], [23]). In this paper
we use the last method proposed in [16] as it showed the most

Fig. 4. Communities structure in the home location network with call-time
weights. Puerto Rico has its own community (not shown).

promising results in partitioning a landline communication
network. Applying the community detection algorithm to the
home location network with call-time weights, we obtain the
partitioning shown in Figure 4. Note that some counties are
not covered by our analysis as CDRs from these areas were not
included in the dataset as the cellular operator does not directly
collect them. As also previously shown for telecommunication
calls in Great Britain [16], communities extracted from a
network of human interactions are generally cohesive, and
follow many state or regional boundaries, see for instance the
New England region3. However some communities do include
a non-adjacent county, which may be due to a low market
share or too few customers in some counties (see for instance
Alabama and Georgia).

As the telecommunication operator’s share and number of
customers vary among the different US counties, the normal-
ization process introduces a bias, as it assumes that a small
percentage of users is able to represent the calling behavior
of the remaining population. If the share or the number of
customers is extremely low, this might not be the case. To
reduce these biases, we decided to introduce two thresholds on
the share and number of customers, in order to remove coun-
ties with insufficient information. The thresholds have been
determined by running the community detection algorithm on
different graphs, varying the market share threshold from 0
to 0.16, and the threshold on the number of customers from
100 to 1000. A county was then defined as anomalous if it is
assigned to a community that is either with cardinality one (the
community has only one member), or if all other community
members are not geographically adjacent4. The effects on the
number of communities and anomalies are shown in Figure 5.

The number of detected communities is roughly constant
on all graphs, while the number of anomalies decreases as we
raise the thresholds. Based on a tradeoff between the suspected
anomalies and keeping as many counties as possible, we define
the two thresholds:

3Colors in the graphs are re-used for visual purposes.
4In practice, we look at the 5 closest counties for which data is available.
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Figure 1. Partitioning of large European countries based on telephone call networks. Left column: Community detection (first level) of
telephone call networks of (A) France, (C) UK, (E) Italy. The black lines show the 22, 11, and 20 administrative regions (NUTS1 for UK, NUTS2 for the
other countries), respectively, the colored areas show the corresponding 21, 16, 22 level 1 regions found by applying the modularity optimization
algorithm on the country-wide phone call networks. All detected regions are cohesive although some of the distinct colors used may appear similar.
Right column: Community detection (second level) within all network partitions from the first level, of (B) France, (D) UK, (F) Italy. For visual clarity
here we present the second level communities grouped into first level communities in an exploded view. Colors of detected subregions only apply
inside their respective level 1 partitions, again all detected subregions are cohesive although some of the distinct colors used may appear similar. For
France we also show the official NUTS2 borders which considerably match well the second level partitioning.
doi:10.1371/journal.pone.0081707.g001
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family members. Migration data would be needed to come to
firmer conclusions.

The detected breaking line of Portugal, Fig. 4E, follows on the
west side roughly the historical borders of the Condado
Portucalense (county of Portugal), slightly south of the city of
Coimbra and the Mondego river. This county of Portugal existed
between the late ninth to the early twelfth century and was a
fiercely disputed region between Moor and Christian reigns, with
often shifting borders due to conquests and reconquests. This
period marks the time in which the national identity of the
Portuguese people was formed and the basis for the Portuguese
kingdom was created. Given that the split is not very strong (a
relatively large percentage of 12:1% of links exists between the split
areas) it is not clear if the borderline we find can be reasonably
attributed to these ancient regions or just to the surrounding areas
of Lisbon and Porto. However, it is at least interesting to find a
split into north and south as certain rivalries between those regions
have left their imprints on almost every aspect of Portuguese social
life [31].

These results do not come with any explicit policy implications
due to the unclear causal relations, but the method can offer either
careful attempts at historical insights into the evolution of specific
communities, or provide possible ‘‘ground truth’’ to their
cohesiveness if communication strength between the inhabitants
is taken as a measure.

Limitations and robustness
As the data sets under study feature call records that were

provided by different sources, possibly collected and aggregated in
different ways, a number of limitations and possible biases may
influence the results. It is not possible to reliably and rigorously

decide if and to which extent certain outcomes are caused by
which reasons. For example, it is not clear why the partition of
France corresponds much better to official regions than in other
countries. Are there social or economic effects in place, where
either individuals are more strongly separated by borders than in
other countries, or where administrative regions have been defined
in better agreement to existing social ties within the country? Or is
it because of the high resolution of the data? One of the possible
reasons is the attachment of the caller and callee to their actual
locations taking into account both mobility and communication
patterns. This also makes Portugal partitioning more clear
compared to UK and Italy. However the case of highest fit for
France probably results from a combination of all mentioned
factors.

In any case, it is very difficult to separate such effects –
additional detailed data on the long-time development of borders
and social ties would be needed. However, we are able to at least
assess the independence of the results from the used partitioning
algorithm. For this task, we calculated partitions using the three
additional, well-known processes of the Louvain method [21], the
Clauset-Newman-Moore heuristic [32], and Newman’s spectral
division method [33]. Resulting R and F indices show no
substantial deviations from our algorithm, Table S1 in File S1,
asserting that the principle properties of the clusterings seem to be
stable in terms of partitioning algorithm, while the quality of
partition shapes slightly increases when higher modularity scores
are obtained [23].

For a robustness analysis of the found partitions from
fluctuations of the underlying networks, we performed a stability
analysis where the networks were perturbed with various levels of
random noise. Results are less clear, but show that community

Figure 4. Split of countries into two parts. (A) France is split by a border going from center north to center south almost exactly following
regional borders. (B) The UK splits along a west-east line which also splits Wales in two. (C) Mainland Italy is split along a line roughly following the
northern border of Emilia-Romagna with the islands of Sardinia and Sicily being assigned to the northern part. (D) Belgium is split along the Dutch-
French language barrier with Brussels assigned to the northern Dutch part, (E) Portugal is split roughly along the ancient border of the county of
Portugal. (F) Ivory Coast and (G) Saudi Arabia are split into western and eastern parts.
doi:10.1371/journal.pone.0081707.g004

Regional Delineation from Human Interactions

PLOS ONE | www.plosone.org 8 December 2013 | Volume 8 | Issue 12 | e81707

GEOGRAPHIC  ‘COMMUNITIES’
CELL PHONE DATA



• Cranshaw, Schwartz, Hong, Sadeh, "The 
Livehoods Project: Utilizing Social 
Media to Understand the Dynamics of a 
City", ICWSM, 58-65, 2012

Figure 2: The municipal borders (in black) and Livehoods for South Side.

they go to for entertainment, where they go for food,
where they go because they enjoy the walk.

The connection the algorithm discovered between these two
areas went both ways. As Jessica (a LH3 resident) explains
“there are some places in Polish Hill we hang out a lot that
feel more like our neighborhood.”

The South Side: The South Side Flats neighborhood of
Pittsburgh lies along the southern border of the Mononga-
hela River. The main business district in the South Side is
along Carson Street, which is one of the top destinations
for nightlife in the city, as it has a high density of bars and
restaurants. Moreover, occupying a large area on the eastern
end of the neighborhood, there is a recently built mixed-use
development called South Side Works consisting of an open
air shopping mall with national vendors, several office build-
ings, and luxury condos.

Our clustering algorithm split South Side Flats into four
Livehoods (see Figure 2). LH7 is the area along Carson be-
tween Liberty Bridge and 18th Street, LH8 is the area be-
tween 18th and 24th Street, and LH9 is the area east of 24th
Street. The fourth area, LH6 is a shopping plaza north of
LH8.

In our interviews, we found strong support of the Live-
hoods clustering for South Side. Particularly strong was the
evidence supporting the split between the western part of
South Side Flats (LH6, LH7 and LH8), and the eastern por-
tion around South Side Works (LH9). We asked every sub-
ject who was familiar with South Side to indicate any places
where they notice a “shift in feel,” and nearly all participants
indicated that South Side Works, which begins just to the
east of the Birmingham Bridge, is distinctly different from
the rest of South Side Flats.

When we showed the municipal borders of South Side
to Ashley, a 25 year old who works at a local radio sta-
tion, she was surprised, commenting “Oh! So that is just all
one big neighborhood. I would have definitely thought there

is a division near the Birmingham [Bridge].” Later, when
we showed the Livehoods mapping and asked her about the
boundary between LH8 and LH9, she exclaimed:

Ha! Yes! See, here is my division! Yay! Thank you al-
gorithm! ...I definitely feel where the South Side Works
and all of that is, is a very different feel.

This “different feel” around South Side Works was identified
by many of the subjects. Sara, a 30 year old video game
designer who lives and works in South Side describes South
Side Works as “more up-scale” and having “more chains”
than the western part of South Side, which she describes as
having more “individual stores.”

Although nearly everyone understood and could explain
the differences between LH8 and LH9, there was less agree-
ment about whether the split between LH7 and LH8 was
valid. For instance, Sara mentioned that the difference be-
tween LH8 and LH9 made sense to her, but she did not
know the difference between LH7 and LH8. On the other
hand, Kara, who has lived both on the western end of Car-
son (LH7) and on the more eastern parts (LH8) noted that it
feels “a bit more isolated” around 23rd making her feel “less
safe.” She elaborated:

Whenever I was living down on 15th Street [LH7] I
had to worry about drunk people following me home,
but on 23rd [LH8] I need to worry about people trying
to mug you... so it’s different. It’s not something I had
anticipated, but there is a distinct difference between
the two areas of the South Side.

As Kara notes, although the difference is not very promi-
nent, the division by the algorithm displays a subtle differ-
ence that can be attributed to the type of people and business
in each of these parts.

Moreover, those that did notice a shift between LH7 and
LH8 described the street as being narrower and the buildings
closer together in LH7. Zach, who is a 30 year old technol-
ogy consultant and who used to be a cab driver in Pittsburgh
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Figure 1: The municipal borders (black) and Livehoods for Shadyside/East Liberty (Left) and Lawrenceville/Polish Hill (Right).

Lawrenceville and Polish Hill: Lawrenceville, one of
Pittsburgh’s largest neighborhoods, had been going through
massive changes and development in recent years. Our inter-
viewees were conflicted about the cohesiveness of the area.
For some, it is one big neighborhood encompassing more
than 20 blocks whereas others notice distinct subsections
carrying different characteristics.

The city itself subdivides Lawrenceville into three differ-
ent municipal neighborhoods: Upper Lawrenceville, Cen-
tral Lawrenceville, and Lower Lawrenceville. And although
these areas are all connected by Butler street, the character
of each of them is different. As Daniel, a 43 year old resident
of Lawrenceville, explains:

The look isn’t different, but the vibe and the feel are
very different. Middle Lawrenceville from 40th un-
til the cemetery that is where the first people were
moving in and fixing up the area... And then, Lower
Lawrenceville, is kind of picking up right now and then
Upper Lawrenceville it’s been like the really rough area
with gangs and drugs.

Our algorithm found similar divisions, breaking the area
into three Livehoods with boundaries closely correspond-
ing to those of the municipal map (see Figure 1 Right). The
border between LH3 and LH4 was situated exactly on the
40th St. Bridge, the border between Lower and Cental Law-
erenceville. The division between LH4 and LH5 was placed
on 48th street, three blocks away from the municipal border
between Central an Upper Lawrenceville on 51st street.

We found strong evidence from our interviews supporting
the Livehood clusters based on factors such as property val-

ues, crime rates, business types, and general feel. As Clau-
dia, a 54 year old journalist, notes:

I think middle [Central] Lawrenceville is the most de-
sirable or well rooted. Where the better housing stock
is. LH3 is definately newer. LH5 pretty much was left
alone... There are parking lots and convenience stores
around 40th that when you hit those you think ‘I have
left something behind.’ And then you are in another
part of Lawrencevile because you passed a bridge and
there’s not a lot of connective tissue at some of these
intersections.
Several of the interviewees did not agree with the sep-

aration of Lower and Central Lawrenceville. For them,
the separation is arbitrary and it is based mainly on lo-
cal businesses’ interests. Since Lawrenceville was perceived
as a dangerous area, a group of business owners in Lower
Lawrenceville decided to brand the area as “LoLa” and mar-
ket it as a stand alone destination for unique shops and
restaurants.

Another point of interest is in the spilling of Lower
Lawrenceville into the adjacent neighborhood of Polish Hill
in LH3. At first glance, this grouping seems odd and not fea-
sible. Polish Hill is a very small neighborhood that is sepa-
rated from Lower Lawrenceville by train tracks and a bus
way in addition to geographic barrier of being located on an
hill. But this grouping seemed natural to Roger, a 47 year
old resident of Polish Hill who said:

I think it’s pretty accurate... I think that’s how some
of our residents identify with Lower Lawrenceville be-
cause of their activities and their perception. Where
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is a “shift in feel” of the neighborhood. If so, we asked them
to mark them on the drawing.

Next we showed a website with an interactive map that
had the municipal neighborhood boundaries overlaid on top
of it, and we asked them for any comments. Looking at this
map, we then asked if there were neighborhoods where the
“borders might be shifting or in flux.”

After that, we showed the them a map of the Livehoods
clusters, initially explaining that the map shows different
“areas of the city” based on an algorithm that looks at
“trends of where people go.” The participants were asked
to study the map and then to give their feedback. Later, we
revealed how the algorithm works, including how we ob-
tained the data. Finally, we showed the participants the “re-
lated areas” feature of the website for the areas of the city
we discussed.

Results
Our results include three case studies of different areas in the
city of Pittsburgh, each reflects one or more of our identified
dispersion patterns. We selected these case studies based on
the amount of attention they received in the interviews. In
each, we characterize and give a short background of the
neighborhoods of the area, describe the Livehoods that we
found there, and present the interviewees input.

Shadyside and East Liberty: In the fall of 2002, a Whole
Foods Market opened in Pittsburgh directly on the border of
two very distinct neighborhoods – East Liberty to the north
and Shadyside to the south, separated by train tracks and
a public busway. East Liberty, once the third-largest retail
center in Pennsylvania, has suffered the pains of decades of
neglect which led to high crime rates and a demographic
population consisting of mainly low income, predominantly
black residents. On literally the other side of the tracks is
Shadyside, one of the most coveted neighborhoods, charac-
terized in our interviews as a wealthy, predominately white
neighborhood (O’Toole 2010). The upscale grocery store
that was situated between them was the first component of
“East Side,” a multi-phase development project in East Lib-
erty orchestrated by The Mosites Company, a local real-
estate firm. Since the opening of Whole Foods, the surround-
ing area has been massively transformed, consequently af-
fecting patterns of behavior for both local residents and vis-
itors.

Our algorithm discovered two Livehoods in this region.
In Figure 1 (Left), LH1 is almost completely contained
within Shadyside and encompasses Walnut Street (one of
three Shadyside business districts), and the western end of
Shadyside, which is mostly residential. On the other hand,
LH2 spilled across the boundary between East Liberty and
Shadyside, containing all of East Liberty and the Whole
Foods, in addition to Shadyside’s two other business districts
(Ellsworth and Highland) and the eastern residential end of
Shadyside.

Two main notions emerged from our interviews that sup-
port the way our algorithm clustered this area. First, the
high-end national stores of Walnut Street draw an entirely
different demographic than the locally owned independent

shops of Highland and Ellsworth, supporting the split be-
tween the eastern end of Shadyside and the western end.
Second, the recent developments of East Side, are actively
blending the distinction between Shadyside and East Lib-
erty, by connecting the business districts in both neighbor-
hoods, supporting the spilled pattern in the region.

Kelley, a 29 year old resident of Shadyside, explained the
difference between Walnut and Ellsworth:

When you go to Walnut Street, that’s where I often
see an older demographic. You will see women and
men above the age of 50 walking around with shop-
ping bags. I don’t see that demographic on Ellsworth
ever shopping around... So I would say that’s a big dif-
ference. You are going to see older, straight, richer peo-
ple on Walnut and you are going to see much younger,
more indie looking people on Ellsworth.

The distinction Kelley made between the two areas repeated
in many of our interviews with Shadyside residents. In ad-
dition to the different demographics visiting the commercial
districts, several of our participants noted that the housing
stock on each end is different. In the area surrounding Wal-
nut Street one can find large self-owned, well-maintained
family houses while on the eastern part, there is much more
rental housing, primarily marketed towards students, and
young professionals.

The grouping of the eastern portion of Shadyside with
East Liberty in LH2 was also supported by many of our
participants. For Kelley and many others that live in eastern
Shadyside, socializing and using resources in the developed
area of East Side feels more natural. As Erin, a 24 year old
graphic designer, notes:

That makes sense to me because I think at one point it
was more walled off and this was poor [East Liberty]
and this was wealthy [Shadyside] and now there are
nice places in East Liberty and there’s some more di-
versity in this area so they are becoming more the same.
And I do think Shadyside is almost shrinking and you
only do have a few streets that are really that wealthy
and bougie any more.

Just like in our interview with Erin, the blurring of the bor-
ders between Shadyside and East Liberty appeared time and
time again. Overall, 85% of the interviewees named this area
when they were asked the open ended question: “Can you
think the neighborhood borders are shifting or in flux any-
where around the city?” For Shadyside residents the East
Side development is a natural extension of their neighbor-
hood while for East Liberty people it is clearly part of their
territory.

Although we received a great deal of support for our clus-
ter, the mapping was perceived as controversial for sev-
eral interviewees, mostly older residents of the area. For
them, the developments in East Liberty did not blur the lines
between the two neighborhoods but rather created neutral
grounds where both groups meet. As Donna, a 62 year old
resident of East Liberty said in regard to the East Side de-
velopment: “it doesn’t bring us together. It’s a place where
both sides feel comfortable with.”
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explained “from an urban standpoint it is a lot tighter on the
western part once you get west of 17th or 18th [LH7].” The
added density of bars and restaurants west of 18th makes
LH7 more appealing to those visiting it for the nightlife.

LH6 has a completely different story to it. This area con-
tains the only grocery store (Giant Eagle) in South Side. The
Giant Eagle is located in a medium sized strip-mall that at-
tracts a demographic that, as noted by our subjects, is dis-
tinct from the rest of South Side. As Sara explains:

There is this interesting mix of people there I don’t see
walking around the neighborhood. I think they are com-
ing to the Giant Eagle from lower income neighbor-
hoods...I always assumed they came from up the hill.

Kara also expressed the same sentiment. When asked who
it is that visits LH6, she said that it is “people that live up
on the slopes maybe even towards Carrick,” which is an-
other municipality to the south. The related Livehoods for
LH6 verified their assumptions, showing a wide area span-
ning several communities in the hills to the south.

Discussion
In this work we present a clustering model for mapping a
city based on the collective behaviors of its residents. By
analyzing patterns of people’s movements through the city,
our approach offers a way to visualize and investigate the
on-the-ground dynamics, structure, and character of a city
on a large scale. Assuming that both people and places de-
fine the character of an area, our results portray a dynamic,
almost live, view of the social flows of people throughout
the different parts of a city–the Livehoods.

We identify three dispersion patterns that describe the re-
lationship between city neighborhoods and Livehoods: split,
spilled and corresponding. Based on our interviews, we find
different local dynamics that each of the patterns could pos-
sibly represent. Split patterns often show the different demo-
graphics or different functions that operate in a certain area.
Spilled patterns typically reveal areas that are in transition,
or borders that are in flux. Finally, corresponding patterns
indicate the strong influence municipal borders and geogra-
phy have over local social interactions. In the following sec-
tion we will examine some of the factors that shape the city
and show how they translate to our mapping and dispersion
patterns.

Municipal Neighborhoods Borders: Contrary to the
strict and largely fixed neighborhood borders set by the city
government, Livehoods are dynamic, and evolve as peo-
ple’s behaviors change. City neighborhoods borders pre-
dominately serve as a way to make order in the chaos of
the urban ecosystem. As Justin Miller, a senior planner in
Pittsburgh City Planning office explains:

I need things organized because we have a functional
role here...We have to allocate resources and there are
a lot of dollars attached to those boundaries...in a lot of
the cases, one side of the street is going to qualify for
CDBG and the other side is not.5

5A program of the US government that provides Community
Development Block Grants to local communities in need.

These arbitrary borders, set by the city urban planners based
on census tracts and geographic landmarks such as roads and
bridges, play an important role in the allocation of resources
and the planning of local development. But as can be seen
from our results, these borders only partially represent the
different areas of the city.

In several cases, the Livehoods boundaries corresponded
perfectly with the municipal borders indicating the strong
role that neighborhoods do play in shaping people’s activ-
ity (e.g. between LH3 and LH4 at 40th Street). However, in
some cases, Livehoods spilled across the borders between
two or more neighborhoods. For example we can see LH2,
which spilled across the border between East Liberty and
Shadyside. In this case, the crossover indicated a shift in
peoples’ behaviors and perceptions of that area, due to a
concerted effort of developers to blur the lines between what
were once two very different neighborhoods. In other cases,
a single neighborhood may be split into several Livehoods.
As we saw with LH6, LH7, LH8, and LH9, each had their
own character as defined by the demographic mix of local
residents and visitors.

Demographics: In our interviews, we found strong evi-
dence that the demographics of the residents and visitors of
an area often played a strong role in explaining the divisions
between Livehoods. As mentioned above, South Side was
split by the algorithm into 4 different Livehoods. Our inter-
viewees characterized each of these differently based on the
type of people who visit them. For example, LH9 was de-
scribed as a newly developed area harboring national chain
stores in contrast to the more local, mostly night-life ori-
ented area of LH7–each attracting different demographics.

In addition, the lack of both users and venues data for cer-
tain areas provides another way of tracing its demographics.
For example, The Hill District, one of Pittsburghs poorest
neighborhoods did not appear at all in the mapping although
it occupies a large area in the heart of the city. The area,
that is mainly inhabited by low income, predominately black
residents, lacks any representation in our mapping thus im-
plying a the low rate of smartphone usage, and providing a
possible depiction of the digital divide.

Development and Resources: Economic development
can affect the character of an area. The spilled mapping of
LH2 captured the social effects the developments of East
Side had over the neighboring areas of East Liberty and
Shadyside. By visualizing the flow of people between the
two once conflicting areas, the algorithm identifies the im-
plications that the economic development had for residents
and visitors of the place.

Similarly, the resources (or lack there of) provided by a
region has a strong influence on the people that visit it, and
hence its resulting character. The split area of LH6 in the
South Side, which serves as a grocery shopping hub for
the communities south of Pittsburgh highlights the distinct
single-purpose of that area, and therefore distinguishes it
from the surrounding Livehoods.

Geography and Architecture: The flow of people
through the streets of a certain area is shaped by the geog-
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is a “shift in feel” of the neighborhood. If so, we asked them
to mark them on the drawing.

Next we showed a website with an interactive map that
had the municipal neighborhood boundaries overlaid on top
of it, and we asked them for any comments. Looking at this
map, we then asked if there were neighborhoods where the
“borders might be shifting or in flux.”

After that, we showed the them a map of the Livehoods
clusters, initially explaining that the map shows different
“areas of the city” based on an algorithm that looks at
“trends of where people go.” The participants were asked
to study the map and then to give their feedback. Later, we
revealed how the algorithm works, including how we ob-
tained the data. Finally, we showed the participants the “re-
lated areas” feature of the website for the areas of the city
we discussed.

Results
Our results include three case studies of different areas in the
city of Pittsburgh, each reflects one or more of our identified
dispersion patterns. We selected these case studies based on
the amount of attention they received in the interviews. In
each, we characterize and give a short background of the
neighborhoods of the area, describe the Livehoods that we
found there, and present the interviewees input.
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erty orchestrated by The Mosites Company, a local real-
estate firm. Since the opening of Whole Foods, the surround-
ing area has been massively transformed, consequently af-
fecting patterns of behavior for both local residents and vis-
itors.

Our algorithm discovered two Livehoods in this region.
In Figure 1 (Left), LH1 is almost completely contained
within Shadyside and encompasses Walnut Street (one of
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Shadyside, which is mostly residential. On the other hand,
LH2 spilled across the boundary between East Liberty and
Shadyside, containing all of East Liberty and the Whole
Foods, in addition to Shadyside’s two other business districts
(Ellsworth and Highland) and the eastern residential end of
Shadyside.

Two main notions emerged from our interviews that sup-
port the way our algorithm clustered this area. First, the
high-end national stores of Walnut Street draw an entirely
different demographic than the locally owned independent
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ference. You are going to see older, straight, richer peo-
ple on Walnut and you are going to see much younger,
more indie looking people on Ellsworth.

The distinction Kelley made between the two areas repeated
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dition to the different demographics visiting the commercial
districts, several of our participants noted that the housing
stock on each end is different. In the area surrounding Wal-
nut Street one can find large self-owned, well-maintained
family houses while on the eastern part, there is much more
rental housing, primarily marketed towards students, and
young professionals.

The grouping of the eastern portion of Shadyside with
East Liberty in LH2 was also supported by many of our
participants. For Kelley and many others that live in eastern
Shadyside, socializing and using resources in the developed
area of East Side feels more natural. As Erin, a 24 year old
graphic designer, notes:

That makes sense to me because I think at one point it
was more walled off and this was poor [East Liberty]
and this was wealthy [Shadyside] and now there are
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versity in this area so they are becoming more the same.
And I do think Shadyside is almost shrinking and you
only do have a few streets that are really that wealthy
and bougie any more.
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ders between Shadyside and East Liberty appeared time and
time again. Overall, 85% of the interviewees named this area
when they were asked the open ended question: “Can you
think the neighborhood borders are shifting or in flux any-
where around the city?” For Shadyside residents the East
Side development is a natural extension of their neighbor-
hood while for East Liberty people it is clearly part of their
territory.

Although we received a great deal of support for our clus-
ter, the mapping was perceived as controversial for sev-
eral interviewees, mostly older residents of the area. For
them, the developments in East Liberty did not blur the lines
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importance in modeling spatial interactions. In the following
sections, we focus on displacement distribution and community
detection, two important topics in human mobility patterns and

spatially-embedded networks, using two fundamental concepts in
geographical analyses: spatial interaction and the distance decay
effect.

Figure 1. Heat map of all check-in points and frequency distribution of check-ins in the 370 cities. (A) The map, created using density
estimation, clearly depicts the distributions of cities and transportation networks in China. Note that The South China Sea Islands are not shown for
simplicity. (B) As shown by the CCDF (complementary cumulative distribution function), the frequency distribution exhibits a heavy tail characteristic.
Shanghai and Beijing, the two biggest cities in China, have the most check-in records.
doi:10.1371/journal.pone.0086026.g001

Figure 2. Characteristics of check-ins from the perspective of users. For each user, we compute the number check-ins, Nh, and the number
of visited cities, Nc, so that the inter-urban movements can be extracted. Note that Nh and Nc are not well correlated, since a user may check in many
times in the same city. (A) Complementary cumulative distribution of Nh. (B) complementary cumulative distribution of Nc. One user visited 83 cities,
which is the maximum of all users. (C) Five anonymous example individuals’ trajectories.
doi:10.1371/journal.pone.0086026.g002
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• temporally and geographically tagged "check-ins", from which it is 
possible to derive trajectories (from A to B and then B to C, etc.). 

• yields a weighted network, onto which community detection is 
eventually applied 

•  Two methodological insights: 
• using Voronoi polygons to group check-ins into "cities" (but 

apparently starts from a predefined list of cities, which are the 
centers of the Voronoi paving). 

• fitting pretty well a gravity model for check-ins and flights, 
exhibiting distinct exponents for short- and long-distance
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1 Fitting the Gravity Model
From the extracted trajectories, we can compute both the

check-in number for each city and the movement between each
two cities. An undirected weighted network, denoted by G, is
constructed from the interaction strengths (Figure 4A). Note that
the movements between cities are actually directed, and we sum
the flows in two directions to represent the interaction strengths. G
has 370 nodes and 15101 edges (graph density = 0.351). In terms
of other statistics of G, the graph diameter is 3, the average degree
SkT = 81.6, the average shortest path SlT = 1.781, and the average
clustering coefficient SCT = 0.657. Compared with a random
network, the relatively low SlT and high SCT suggest that G has
properties of a small world network.

The edge weights follow a power law distribution (Figure 4B). It
is similar to the spatial interaction distributions identified from
different data sets [15,16,32]. Kang et al. have argued that such a
power law distribution mainly derives from the city size
distribution, given that its distance decay effect is weak [15].

In this research, we quantitatively estimate the distance decay
effect by fitting the gravity model. Because of the low graph
density, we adopt the PSO method to find the best fit. According
to the PSO method, we try different b values, from 0.1 to 2.0 with
a step of 0.1, in the gravity model. The goodness of fit (GOF) is
measure using the correlation coefficient between the observed
and estimated interactions. For each fixed b value, say 1.0, the
PSO method is used to search the best GOF, where each particle
is a 370-dimensional vector denoting the theoretical sizes of all
cities.

The maximum GOF = 0.985 is achieved when b= 0.8. The
exponent is close to the value observed from air passenger flows in
China [11] but lower than the distance parameters, which vary
between 1.0 and 2.0, estimated using intra-urban movement data
[9,30]. Figure 5 plots the relationship between the estimated
interactions and real interactions between cities. The high GOF
indicates that the inter-urban interactions are governed by the
gravity model with a power law distance decay effect.

Figure 3. Comparison between trips extracted from check-in records, denoted by Tcij, and flight trips Tfij. (A) Scatter plot of Tcij versus
Tfij, indicating a weak positive correlation. (B) 50 city pairs with the top highest Tcij/Tfij.
doi:10.1371/journal.pone.0086026.g003

Figure 4. Characteristics of interaction strengths between the 370 cities. (A) Interaction map of the 370 cities. The red lines indicate stronger
interactions. The maximum value is 137,847, which is the number of trips between Shanghai and Suzhou, extracted from the check-in data set. The
red dots represent capital cities of provinces in China. (B) Complementary cumulative distribution of edge weights (or interaction strengths) between
cities.
doi:10.1371/journal.pone.0086026.g004
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statistics. To construct a precise individual level model requires
long-term and detailed trajectory data.

Last, by constructing a spatially-embedded network from the
check-in data, we regionalize China’s territory using a community
detection method. The result exhibits a similar pattern to previous
studies, in which most communities are spatially consecutive and
coincide with geographical units (provinces in the case of this
research). Such patterns can also be attributed to the distance
decay effect that generally influences closer cities to form stronger
connections and thus be clustered together. We also find a
difference between the distance decay effects in intra-province and
inter-province trips. It is this difference that makes interactions
between cities in the same province relatively stronger and
therefore classified into the same community.

Human mobility patterns and spatially-embedded networks
have drawn much attention in recent complexity science studies,
where much literature focuses on finding the underlying
geographical impacts. Meanwhile, spatial interactions in different
spatial scales are widely investigated in geographical analyses.
Distance obviously plays an important role in human mobility
patterns, spatial interactions, and spatially-embedded networks.
The distance decay effect decreases the probabilities of long-
distance movements as well as the interaction strengths between
faraway places, and consequently shapes the topological structures
of spatial networks. Based on an empirical data set, this research
makes an initial effort to bridge the three concepts using the
distance decay effect. Inversely, with the rapid development of
complexity science, human mobility patterns and spatially-
embedded networks provide a new perspective and new tools to
revisit conventional geographical analyses. This is especially
valuable in the era of big data since it is becoming easier for us
to collect various data for representing movements, measuring
interactions, and constructing spatial networks.
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Table S1 Number of trips and distances between the
370 cities. Values in the upper triangular matrix are trip
numbers and the distances are in the lower triangular matrix. ‘‘na’’
indicates no trip observed from the check-in data.
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Table S2 Geographical coordinates of the 370 cities.
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Figure 9. Communities detected from the interaction network G. We run the multilevel algorithm 20 times, each of which yields a partition.
By merging the Voronoi polygons of cities in the same community, a partition can be visualized. Regions with thicker borders indicate that they occur
in more partitions.
doi:10.1371/journal.pone.0086026.g009

Figure 10. Log-log plot of estimated versus observed interac-
tion strengths when b = 0.8. The yellow rectangles and gray circles
represent interactions between cities in one province and two different
provinces, respectively. It is clear that the gravity model underestimates
intra-province trips.
doi:10.1371/journal.pone.0086026.g010
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DATA COLLECTION 
• Instagram API

• Request all photos from a 5 
Km radius around a specified 
point, within a time window

• Make requests for 
coordinates of all locations 
with population > 500

• Discard duplicates (from 
radius overlaps)
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“COMMUNITY” DETECTION
• Normalize networks with 

configuration model (avoid size 
effects)

• Community detection 100 
times with Louvain algorithm 
(non-deterministic)

• Force two communities 
(optional extra step)

• Detect borders on Voronoi 
surface with weights (percentage 
of occurrences on Louvain runs) 



COLOCATION NETWORK

Location A Location B

User X

photographsphotographs

weight = # common users



Set of locations with 
popultaion > 500

Instagram API requests 
(photos + comments on a 
5Km radius around each 

location)

Data Cleaning (remove 
redundancies, assign 

photos to closest 
locations)

Generate colocation 
graph

Community detection 
(100 runs of Louvain)

Generate Voronoi 
diagram

Smoothing

Border detection

Compute distance 
distributions

Filter percentile 
colocation graphs

100 x
(one per percentile)
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Methods
The datasets used in this paper can be obtained by request to the corresponding author. The source code of the 
programs that implement all the data retrieval and processing tasks discussed in this paper was released as open 
source and is available in a public repository32.

Data collection and preprocessing. The Instagram API allows for the collection of all the meta-data and 
comments of photos on a maximal 5 km radius around a given geographical coordinate. To define points of inter-
est, for countries we use a worldwide database of geographical locations with more than 500 inhabitants. For cities 
we simply define a dense enough grid that guarantees that the entire territory is covered, given the 5 km radius 
around each point. We then query the API for all photo meta-data within the maximal radius around each point. 
Given the possibility of overlap for locations close to each other, we perform further data processing to remove 
duplicates and associate each photo with the closest known location.

Networks, scales and boundaries. We use the previous data to generate a weighted graph connecting the 
set of locations. This graph is undirected and based on user movement, by considering the set of locations where 
a same user took photos. The weight of an edge represents the number of users who took photos in both the loca-
tions connected by the edge. Conventionally, we can represent this graph as G =  {V, E}, where V is the set of 
locations and �⊂ × ×E V V  the set of weighted edges.

We finally remove all vertices with a very low degree (which we define in ad hoc fashion as less than 5 for all 
regions). Intuitively, this means that we only consider locations where at least 5 different users took photos. These 
very low activity locations are highly susceptible to sampling distortion and introduce noise in the community 
detection process.

Percentile graphs. One graph is generated for each distance percentile, which thereby defines a scale. Let us con-
sider ms to be the maximum absolute distance for percentile or scale s, and d(e) a function that gives the distance 
between the two vertices of edge e. The graph Gs for scale s is then defined as:

= = ∈ ≤G V E E e E d e m{ , }, where { ( ) } (1)s s s s

Network partitions. We employ the well-known Louvain method33 — a de facto gold standard in network com-
munity detection, widely used for the high quality of its results at a low computational cost — as implemented 
in the igraph software package34,35. Optimal community detection, like many clustering problems, is probably 
NP-hard36. The Louvain method is thus an approximation algorithm. It is also non-deterministic. To both achieve 
higher quality partitions and increase the stability of partitions across scales, we perform 100 runs of Louvain for 
each graph, and choose the result that attains the highest modularity. Another common approach is to consider 
all the outcomes of a large number of runs, and visualise the partitions in a way that assigns visual weights to 
boundaries in proportion to the number of times they appear17. Given that we are working with the extra dimen-
sion of scale, we avoid this approach for the sake of simplicity.

Notice that community detection is performed on the graph of locations, with no information on the geo-
graphic proximity of the vertices. Fortunately, we do find that the communities detected are mostly contiguous, 
with some noise (see Supp. Info.).

The Louvain method can produce an arbitrary number of partitions. To validate our results, we are also inter-
ested in producing bi-partitions. To achieve this, we take the best partition found by Louvain and exhaustively try 
all possible merges of the given partitions into two. The merge with the highest modularity (although typically 
lower than the result produced by Louvain) is chosen.

Geographical boundary smoothing. We use this notion of Voronoi neighbourhood to define a smooth-
ing process. From the partition process of the previous section, every location is assigned to a community. If the 
majority of the neighbours of a location (including the location itself) belong to a different community, then the 
cell is assigned to this majority community. The process is repeated iteratively, until the previous condition is not 
triggered.

The geographical boundaries are finally defined by the Voronoi cell boundaries for which the two neighbour-
ing cells’ locations do not belong to the same community.

Scale similarity, breakpoint detection and natural scales. Measuring partition similarity. Firstly we 
define a metric of similarity between two partitions of a same set of locations using a Rand index37. Consider V 
the set of locations (as before) and Ps and Ps′ two partitions of V produced at scales s and s′  by community detec-
tion followed by smoothing. A partition is defined as a set of subsets of locations, it is thus included in ( V( ).

Let us define a function µP(i, j) that takes the value 1 if both i and j belong to the same subset of a partition P, 
0 otherwise:

µ =
⎧
⎨
⎪⎪
⎩⎪⎪

∃ ∈ ∈i j X P i j X( , ) 1, if such that ,
0, otherwise (2)

P

We can then define the similarity of Ps and Ps′ as the ratio between the number of pairs of locations in V that 
have the same value of µ for both Ps and Ps′ (i.e. they are classified similarly at scales s and s′ ), and the total number 
of possible location pairs:www.nature.com/scientificreports/
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δ
µ µ

=
| ∈ ≠ = |

| |′

′

V P P i j V i j i j i j
V

( , , ) {( , ) , , ( , ) ( , )}

(
2

)
(3)

s s

P P2 s s

Intervals of similar scales. The above δ metric allows us to compare graph partitions for each percentile against 
every other percentile. An immediate application is visual inspection, by generating heatmaps as the ones show in 
Fig. 1. A central question to the research being presented in this article is whether partitions Ps change smoothly 
as s increase, or if there are clear discontinuities. The heatmaps indicate quite clearly that the discontinuities do 
exist.

To identify the breakpoints in partition similarity we introduce another metric, somewhat similar to the con-
cept of modularity in graphs – albeit even simpler. This metric measures interval separation, given a set of break-
points B =   {b0, …  , bn}. Let us also consider the set of intervals defined by these breakpoints: 
! = .. …B b b b b( ) {]0 ], ] , ], , ] , 100]}n0 0 1 . The interval separation for a given B can thus be defined as:

σ
δ

δ
=
∑ ⋅ ∑∈ ′∈ ′

∈
−

I V P P
V P P

( , , )
max ( , , )

(4)
B

I B s s I s s

b B b b b

( ) ,

\ { } 1
0

!

Intuitively, this is a ratio between the mean similarity within intervals (weighted by the interval size) and the 
maximum similarity between consecutive partitions in different intervals. The higher the σ, the greater the sim-
ilarity between partitions in the same interval compared to the worst case similarity between partitions on both 
sides of a breakpoint between consecutive intervals.

Using this metric, we define a simple algorithm that iteratively adds breakpoints until σ can no longer be 
improved. We define a minimum interval size of 5 to avoid isolating noisy outliers. In practice, the minimum 
interval only has an effect on the two cities, for which the very final scales are indeed quite noisy.

Prototypical scales. Intervals thus define natural scales and for a given interval I, we define the prototypical scale 
sI as the percentile of I with the partition that is the most similar to all other partitions in I. To formalise:

∑δ= ∈
′∈

′s V P Pargmax ( , , )
(5)I s I

s I
s s

Multi-scale smoothing. The smoothing method that was previously described can be extended to a set of parti-
tions at s different scales. To each Voronoi tile we assign a tuple consisting of the community number (ci) that the 
tile x belongs to at each scale after applying Louvain:

= …t c c, , (6)x s0

Such tuples are treated as values, and the majority rule is applied as before. If a certain tuple is in the majority 
in the neighbourhood of tx, then tx takes the value of that entire tuple.

The advantage of this approach is that it leads to a greater overlap of borders from different scales. The cost is 
that some precision is lost. As can be seen, for example in Fig. 2, there are some deviations from the borders at 
individual natural scales to the borders on the same scales of the multiscale map. We contend that this is a reason-
able compromise for the purpose of apprehending the relationship between the different natural scales in a map.
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Results
Phase transitions and natural scales. After community detection and smoothing for every percen-
tile-scale, we are in a position to analyse the similarity between scales. More specifically, we are interested in 
seeing if there are well-defined ranges of scales that are sufficiently similar amongst each other and sufficiently 
distinct between ranges so that we can talk of natural scales, and reduce the 100 percentiles to a smaller number 
of scales.

Using a simple parameter-free breakpoint detection algorithm we are able to find phase transitions in scale 
space. We understand “phase transition” in a generic way, i.e. it corresponds to an abrupt change in the behaviour 
of partitions when slightly increasing the movement radius, going from a scale to the next ones. For the nine 
regions under study, our algorithm finds that the scale space is divided into no more than 2 or 3 well-differentiated 
intervals of scales characterised by very similar patterns. Aggregating increasingly long links while remaining 
below the upper bound of a given interval does not alter significantly the space partition typical of that interval. 
We call these intervals natural scales. Moreover, the breakpoints automatically found by our algorithm mostly 
match the visual intuition: in Fig. 1, we see that these phase transitions are also quite obvious simply by visual 
inspection.

Multi-level partitions and prototypical scales. Given intervals of similar scales or natural scales, it 
is now desirable to have a method to visualise the boundaries defined by the partitions in those intervals. We 
propose a simple solution: identify the percentile that best represents the entire interval. We call this prototypical 
percentile a prototypical scale of the region under study. The prototypical scale of a given interval is the percentile 

Figure 1. Scale dissimilarity heat maps. Dissimilarity values are normalized per region to a [0, 1] scale. 
Lighter colors represent higher dissimilarity. Pure black (0.0) corresponds to a perfect match, bright yellow (1.0) 
to the maximum dissimilarity found for the region. Dashed blue lines indicate the discontinuities identified by 
the breakpoint detection algorithm and, accordingly, natural scales; green dots represent the prototypical scale 
for each natural scale interval. The mean absolute dissimilarity value per pair of intervals is shown. A value in 
a green background corresponds to an internal mean dissimilarity (the interval is being compared to itself); a 
black background indicates a mean dissimilarity between different intervals.
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Fig. 2. Belgium borders at different scales. a) Heat map extracted from figure 1; b) Borders for the long distance scale; c) Borders for the short distance scale; d) Borders for
the middle distance scale; e) Multiscale borders; f) Borders based on optimal two community partition of the full graph; g) Language communities of Belgium.

Fig. 3. Several multi-scale maps. Green corresponds to the smallest natural scale, blue to the middle (if it exists) and red to the largest.
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of this article, but we can identify some features that confirm folk knowledge about certain regions. In Portugal, 
large scale boundaries delineate the highly touristic beaches of Algarve in the south and fuzzily divide the country 
into north and south regions, while the short scales provide sensible local partitions, for example the dense city of 
Oporto and the socio-economic divide between the capital city of Lisbon and the neighbouring but more affluent 
Cascais/Estoril coastal area. The Benelux map enriches the previous insight on Belgium by providing a broader 
picture on potential cross-national interfaces – an achievement not possible with country-specific datasets tra-
ditionally used in the literature – here, the highest scale exhibits a mix of expected international borders (for 
instance between Belgium and the Netherlands) and fuzzy cross-national spaces (such as the wide commuting 
area surrounding Luxembourg, or the narrow strips adjacent to the French-Belgian border, e.g. around Lille), 
while leaving room for cross-border low-scale patterns. Paris features both the traditional east-west sociological 
partition of the city, while exhibiting more specific activity neighbourhoods at the lower level (Quartier Latin, 
Belleville, the governmental area).

Scale-dependent user behavior. Natural scales thus describe geographical areas and boundaries oper-
ating within a broad range of scale percentiles, though not beyond. In this respect, they correspond to a dis-
crete spectrum of mobility behaviours which most likely unveil consistent yet distinct spatial practices of the 

Figure 3. Several multi-scale maps. Green corresponds to the smallest natural scale, blue to the middle (if 
it exists) and red to the largest. All maps were generated by the authors using the Basemap Matplotlib Toolkit 
ver. 1.0.8 (http://matplotlib.org/basemap/). Map tiles used in the background of the Berlin and Paris maps 
OpenStreetMap contributors, licensed under CC BY-SA (www.openstreetmap.org/copyright). The licence terms 
can be found on the following link: http://creativecommons.org/licenses/by-sa/2.0/.



Figure S21: Paris, short-distance borders (percentile 24).

24

Figure S22: Paris, medium-distance borders (percentile 54).
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Figure S23: Paris, long-distance borders (percentile 84).
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Figure S24: Paris, multi-scale borders.
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