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“Classical” preferential attachment: 
assuming that links do not attach uniformly with respect to degree k, with a 
bias function ∏(k) depicting the degree increment of degree-k nodes

A.L. Barab!asi et al. / Physica A 311 (2002) 590–614 599

Fig. 6. Average number of links per node (⟨k⟩) for the M and NS database. Results are computed on the
cumulative data up to the given year.

modeling paradigms. A much used assumption is that in scale-free networks nodes
link with higher probability to those nodes that already have a larger number of links,
a phenomena labeled as preferential attachment [3,13]. Implicitly or explicitly, prefer-
ential attachment is part of all network models that aim to explain the emergence of the
inhomogeneous network structure and power-law connectivity distribution [5–8]. The
availability of dynamic data on the network development allows us to investigate its
presence in the co-authorship network. For this network preferential attachment appears
at two levels, that we discuss separately.
(i) New nodes: For a new author, that appears for the !rst time on a publication,

preferential attachment has a simple meaning. It is more likely that the !rst paper will
be co-authored with somebody that already has a large number of co-authors (links) that
with somebody less connected. As a result “old” authors with more links will increase
their number of co-authors at a higher rate than those with fever links. To investigate
this process in quantitative terms we determined the probability that an old author with
connectivity k is selected by a new author for co-authorship. This probability de!nes
the !(k) distribution function. Calling “old authors” those present up to the last year,
and “new author” those who were added during the last year, we determine the change
in the number of links, "k, for an old author that at the beginning of the last year
had k links. Plotting "k as a function of k gives the function !(k), describing the
nature of preferential attachment. Since the measurements are limited to only a !nite
("T = 1 year) interval, we improve the statistics by plotting the integral of !(k):

"(k) =
∫ k

1
!(k ′) dk ′ : (1)

If preferential attachment is absent, !(k) should be independent of k, as each node
grows independently of its degree, and "(k) is expected to be linear. As Fig. 7 shows,
we !nd that "(k) is nonlinear, increasing as "(k) ∼ k#+1, where the best !t gives # ≃
0:8 for M and # ≃ 0:75 for NS. This implies that !(k) ∼ k#, where # is di#erent from
1 [31]. As simulations have shown, such nonlinear dependence generates deviations

Barabasi, Jeong, Neda, 
Ravasz, Schubert, Vicsek, 2002
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Fig. 7. Cumulated preferential attachment (!(k)) of incoming new nodes for the M and NS database. Results
computed by considering the new nodes coming in the speci!ed year, and the network formed by nodes
already present up to this year. In the absence of preferential attachment !(k) ∼ k, shown as continuous
line on the !gures.

from a power law P(k) [31]. This was supported by analytical calculations [8], that
demonstrated that the degree distribution follows a power law only for " = 1. The
consequence of this nonlinearity will be discussed below.
(ii) Internal links: A large number of new links appear between old nodes as the

network evolves, representing papers written by authors that were part of the network,
but did not collaborate before. Such internal links are known to e"ect both the topology
and dynamics of the network [5]. These internal links are also subject to preferential
attachment. We studied the probability #(k1; k2) that an old author with k1 links forms
a new link with another old author with k2 links. The #(k1; k2) probability map can
be calculated by dividing N (k1; k2), the number of new links between authors with k1
and k2 links, with the D(k1; k2), number of pairs of nodes with connectivities k1 and
k2 present in the system:

#(k1; k2) =
N (k1; k2)
D(k1; k2)

: (2)

The three-dimensional plot of #(k1; k2) is shown in Fig. 8, the overall behavior indi-
cating preferential attachment: #(k1; k2) increases with as either k1 or k2’s increase.
A natural hypothesis is to assume that #(k1; k2) factorizes into the product k1k2. As

Fig. 9 shows, we indeed !nd that

!(k1k2) =
∫ k1k2

1
#(k ′1k

′
2) d(k

′
1k

′
2) (3)

can be well approximated with a slope 2 as a function of k1k2, indicating that for
internal links the preferential attachment is linear in the degree.
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spatial distance

It assumes that the probability that a new node will link to an
existing node with k links depends linearly on k, i.e., !(k) "
k!#iki. On the other hand, in real systems preferential attach-
ment could have an arbitrary nonlinear form. Calculations
indicate, however, that for !(k) $ k!, with ! % 1 the degree
distribution deviates from a power law (17). In the light of these
results, to properly model the Internet, we need to determine the
precise functional form of !(k). To achieve this, we use Internet
AS maps recorded at 6-month intervals, allowing to calculate the
change &k in the degree of a AS node with k links during the
investigated time frame. The results indicate that the rate at
which a node increases its degree is linearly proportional with the
number of links the node has, offering quantitative support for
the presence of linear preferential attachment (Fig. 2d), sup-
ported by independent measurements as well (17).

Taken together, our measurements indicate that four mech-
anisms, acting independently, contribute to the Internet’s large-
scale topology. First, in contrast with classical network models
the Internet grows incrementally, being described by an evolving
network (8, 17–19) rather than a static graph (5, 6). Second,
nodes are not distributed randomly, but both routers and do-
mains form a scale-invariant fractal set with fractal dimension
Df " 1.5. Finally, link placement is determined by two competing
mechanisms. First, the likelihood of connecting two nodes
decreases linearly with the distance between them, and second,
the likelihood of connecting to a node with k links increases
linearly with k. Building on these mechanisms, each supported
independently by our measurements, we propose a general
model that provides an integrated framework to investigate the
effect of the different mechanisms on the Internet’s large-scale
topology.

Consider a map, mimicking a continent, which is a 2D surface
of linear size L. The map is divided into squares of size ! ' !
(! (( L), each square being assigned a population density "(x,y)
with fractal dimension Df. At each time step we place a new node
i on the map, its position being determined probabilistically, such
that the likelihood of placing a node at (x, y) is linearly propor-
tional with "(x, y). We assume that the new node connects with
m links to nodes that are already present in the system. The
probability that the new node links to a node j with kj links at
distance dij from node i is

!)kj, dij* " kj
!!dij

#, [1]

where ! and # are preassigned exponents, governing preferential
attachment and the cost of the node-node distance. Increasing
! will favor linking to nodes with higher degree, whereas a higher
# will discourage long links.

The parameters of the model can be assigned into two
qualitatively different classes. First, L, !, and m are nonuniversal
parameters, as their value can be changed without affecting the
network’s large-scale topology. On the other hand, !, #, and Df
are universal exponents, as their values uniquely parameterize
a family of Internet models, generating potentially different
large-scale topologies. Therefore, we use a 3D phase space
whose axis are the scaling exponents, 2+Df, !, and 1!(# , 1)
(Fig. 3) to identify the possible scaling behavior predicted by the
model. For easy reference, we show the location within this phase
space of all currently used Internet topology generators. Our
measurements (Fig. 2) allow us to unambiguously identify the
position of the Internet within this phase space at # " 1, ! " 1,
and Df " 1.5, clearly separated from all network generators. Such
separation should not be a problem if some of the models and
the Internet belong to a region of the phase space that share the
same universal topological features. We will show next, however,
that this is not the case, as deviations from the point denoting
the Internet can significantly alter the network’s large-scale
topology.

To systematically investigate the changes in the network
topology as we deviate from the point denoting the Internet next
we consider the effect of changing #, !, and Df, moving
separately along the three main axis.

Varying # while leaving ! " 1 and Df " 1.5 unchanged changes
the contribution of the Euclidean distance to the network
topology, interpolating between the # " 0 phase corresponding
to the scale-free model and the # " - limit, corresponding to the
Waxman rule. As Fig. 4a shows, for an exponential distance
dependence (Waxman’s rule) the degree distribution P(k) de-
velops an exponential tail, disagreeing with the power law P(k)
of the Internet (7).** Moving toward the # " 0 axis, as the
physical distance gradually loses relevance in Eq. 1, we recover
the scale-free model, for which the physical layout does not
influence the network topology. Changing # affects the link

Fig. 2. Characterizing the Internet’s physical layout and topology by using
direct measurements. (a) The physical layout of the Internet was studied by
using a box counting method (15, 16), applied to the map shown in Fig. 1. The
log-log plot shows the number of boxes of size ! ' ! km with nonzero
routers!AS!inhabitants in function of ! for North America. The slope of the
straight line indicates that Df . 1.5 / 0.1 for each dataset. (b) The dependence
of the router!AS density on the population density in North America, showing
the average number of router!AS nodes in a 1° ' 1° box in function of the
number of people living in the same area. Similar plots were obtained for each
continent, the steepness of the curves strongly correlating with economic
factors. Indeed, strong correlations between router density and population
are observed for North America, Australia, and Europe, whereas the correla-
tions are much weaker for Africa and South America. To determine the
AS density we used 12,409 ASs from Network Analysis Infrastructure (http:!!
moat.nlanr.net!infrastructure.html), combined with NETGEO to identify their
geographical location. (c) The cumulative length distribution of the links
connecting routers defined as shown

#
d

R

P(x)dx,

as a function of the dimensionless variable d!R, where d is the Euclidean
distance between two routers and R " 6,378 km is the radius of the Earth.
The linearly decaying cumulative P(d) on a log-linear plot indicates that
P(d) $ 1!d. We removed the first point, corresponding to d!R . 0, as that
collects within a single box all router pairs that our map resolution does not
resolve, creating an artificially large router density. Higher-resolution maps
should automatically eliminate this artifact. (d) The cumulative change &k in
the connectivity of AS nodes with k links. The dotted line has slope 2,
indicating that the cumulative &k $ k2, i.e., the change in &k is linear in k,
offering direct proof for linear (! " 1) preferential attachment.
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connect to the closest node with sufficient bandwidth, a process
that clearly favors shorter links. To discourage long links, all
topology generators are based on the Waxman model (3), which
assumes that the likelihood of placing a link between two nodes
separated by the Euclidean distance d decays as P(d) ! exp("d!
d0), where d0 is a free parameter taken to be proportional to the
system size. Despite its wide use in Internet topology generators
(3, 4, 13), there is no empirical evidence for such exponential
form, which forbids links between faraway nodes. Intuition
suggests otherwise: one would expect that the likelihood of
connecting two nodes is inversely proportional with the distance
between the nodes, i.e., P(d) ! 1!d. Indeed, the cost of placing
a physical link between two existing routers has two components
to it: (i) a fixed technical and administrative connection cost at
the two ends of the link and (ii) a cost of the physical line and
its maintenance. The second factor is proportional to the line’s

length. For large distances the distance-dependent cost domi-
nates, potentially suggesting an 1!d asymptotic dependence for
the probability to connect two routers. The correct functional
form of P(d) is crucial for Internet modeling: our simulations
indicate that a network developing under the Waxman rule
asymptotically converges to a network with an exponentially
decaying degree distribution, in contrast with the power law
documented for the Internet. Therefore, to uncover the proper
form of P(d) we measured the length distribution of the docu-
mented Internet links. The results, shown in Fig. 2c, indicate that
both router and AS level P(d) decays linearly with d, excluding
Waxman’s rule.

Preferential Attachment
Preferential attachment is believed to be responsible for the
emergence of the scale-free topology in complex networks (8).

Fig. 1. Distribution of the Internet around the world. (a) Worldwide router density map obtained by using the NETGEO tool (www.caida.org!tools!utilities!
netgeo) to identify the geographical location of 228,265 routers mapped out by the extensive router level mapping effort of Govindan and Tangmunarunkit.**
(b) Population density map based on the Columbia University’s Center for International Earth Science Information Network’s population data (http:!!
sedac.ciesin.org!plue!gpw). Both maps are shown with a box resolution of 1°#1°. The bar next to each map gives the range of values encoded by the color code,
indicating that the highest population density within this resolution is of the order 107 people!box, while the highest router density is of the order of 104

routers!box. Note that while in economically developed nations there are visibly strong correlations between population and router density, in the rest of the
world Internet access is sparse, limited to urban areas characterized by population density peaks.

Yook et al. PNAS " October 15, 2002 " vol. 99 " no. 21 " 13383
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Popularity versus similarity in growing networks
Fragkiskos Papadopoulos1, Maksim Kitsak2, M. Ángeles Serrano3, Marián Boguñá3 & Dmitri Krioukov2

The principle1 that ‘popularity is attractive’ underlies preferential
attachment2, which is a common explanation for the emergence of
scaling in growing networks. If new connections are made pref-
erentially to more popular nodes, then the resulting distribution of
the number of connections possessed by nodes follows power
laws3,4, as observed in many real networks5,6. Preferential attach-
ment has been directly validated for some real networks (including
the Internet7,8), and can be a consequence of different underlying
processes based on node fitness, ranking, optimization, random
walks or duplication9–16. Here we show that popularity is just one
dimension of attractiveness; another dimension is similarity17–24.
We develop a framework in which new connections optimize certain
trade-offs between popularity and similarity, instead of simply pre-
ferring popular nodes. The framework has a geometric interpretation
in which popularity preference emerges from local optimization. As
opposed to preferential attachment, our optimization framework
accurately describes the large-scale evolution of technological (the
Internet), social (trust relationships between people) and biological
(Escherichia coli metabolic) networks, predicting the probability of
new links with high precision. The framework that we have developed
can thus be used for predicting new links in evolving networks, and
provides a different perspective on preferential attachment as an
emergent phenomenon.

Nodes that are similar have a higher chance of getting connected,
even if they are not popular. This effect is known as homophily in social
sciences17,18, and it has been observed in many real networks19–24. In the
web23,24, for example, an individual creating her new homepage tends
to link it not only to popular sites such as Google or Facebook, but also
to not-so-popular sites that are close to her special interests—for
example, sites devoted to the composer Tartini or to free solo climbing.
These observations suggest the introduction of a measure of attractive-
ness that would somehow balance popularity and similarity.

The simplest proxy for popularity is the node birth time. All other
things being equal, older nodes have more chances to become popular
and attract connections3,4. If nodes join the network one by one, then
the node birth time is simply the node number t 5 1, 2, …. To model
similarity, we randomly place nodes on a circle that represents the
simplest similarity space. That is, the angular distances between nodes
model their similarity distances, such as the cosine similarity or any
other measure22–24. The simplest way to model a balance between popu-
larity and similarity is then to establish new connections that optimize
the product between popularity and similarity. In other words, the
model is simply as follows: (1) initially the network is empty; (2) at
time t $ 1, new node t appears at a random angular position ht on the
circle; and (3) new node t connects to a subset of existing nodes s, s , t,
consisting of the m nodes with the m smallest values of product shst,
where m is a parameter controlling the average node degree k~2m, and
hst is the angular distance between nodes s and t (Fig. 1a, b). At early
times t # m, node t connects to all the existing nodes.

This model has an interesting geometric interpretation, shown in
Fig. 1c. Specifically, after mapping birth time t of a node to its radial
coordinate rt via rt 5 ln t, all nodes lie not on a circle but on a plane—
their polar coordinates are (rt, ht). It then turns out that new nodes

connect simply to the closest m nodes on the plane, except that
distances are not Euclidean but hyperbolic25. The hyperbolic distance
between two nodes at polar coordinates (rs, hs) and (rt, ht) is approxi-
mately xst 5 rs 1 rt 1 ln(hst/2) 5 ln(sthst/2). Therefore the sets of
nodes s minimizing xst or shst for each t are identical. The hyperbolic

1Department of Electrical Engineering, Computer Engineering and Informatics, Cyprus University of Technology, 33 Saripolou Street, 3036 Limassol, Cyprus. 2Cooperative Association for Internet Data
Analysis (CAIDA), University of California, San Diego (UCSD), La Jolla, California 92093, USA. 3Departament de Fı́sica Fonamental, Universitat de Barcelona, Martı́ i Franquès 1, 08028 Barcelona, Spain.
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Figure 1 | Geometric interpretation of popularity 3 similarity
optimization. The nodes (dots) are numbered by their birth times, and located
at random angular (similarity) coordinates. On its birth, the new circled node t
in the yellow annulus connects to m old nodes s minimizing shst. The new
connections are shown by the thicker blue links. In a and b, t 5 3 and m 5 1. In
a, node 3 connects to node 2 because 2h23 5 2p/3 , 1h13 5 5p/6. In b, node 3
connects to node 1 because 1h13 5 2p/3 , 2h23 5p. In c, an optimization-
driven network with m 5 3 is simulated for up to 20 nodes. The radial
(popularity) coordinate of new node t 5 20 is rt 5 ln t, shown by the long thick
arrow. This node connects to the three hyperbolically closest nodes. The red
shape marks the set of points located at hyperbolic distances less than rt from
the new node. Arrows on dots show all nodes drifting away from the crossed
origin, emulating popularity fading as explained in the text. The drift speed in
the network shown corresponds to the degree distribution exponent c 5 2.1.
The outer green circle shows the current network boundary of radius rt 5 ln t
expanding with time t as indicated by green arrows.
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attachment2, which is a common explanation for the emergence of
scaling in growing networks. If new connections are made pref-
erentially to more popular nodes, then the resulting distribution of
the number of connections possessed by nodes follows power
laws3,4, as observed in many real networks5,6. Preferential attach-
ment has been directly validated for some real networks (including
the Internet7,8), and can be a consequence of different underlying
processes based on node fitness, ranking, optimization, random
walks or duplication9–16. Here we show that popularity is just one
dimension of attractiveness; another dimension is similarity17–24.
We develop a framework in which new connections optimize certain
trade-offs between popularity and similarity, instead of simply pre-
ferring popular nodes. The framework has a geometric interpretation
in which popularity preference emerges from local optimization. As
opposed to preferential attachment, our optimization framework
accurately describes the large-scale evolution of technological (the
Internet), social (trust relationships between people) and biological
(Escherichia coli metabolic) networks, predicting the probability of
new links with high precision. The framework that we have developed
can thus be used for predicting new links in evolving networks, and
provides a different perspective on preferential attachment as an
emergent phenomenon.

Nodes that are similar have a higher chance of getting connected,
even if they are not popular. This effect is known as homophily in social
sciences17,18, and it has been observed in many real networks19–24. In the
web23,24, for example, an individual creating her new homepage tends
to link it not only to popular sites such as Google or Facebook, but also
to not-so-popular sites that are close to her special interests—for
example, sites devoted to the composer Tartini or to free solo climbing.
These observations suggest the introduction of a measure of attractive-
ness that would somehow balance popularity and similarity.

The simplest proxy for popularity is the node birth time. All other
things being equal, older nodes have more chances to become popular
and attract connections3,4. If nodes join the network one by one, then
the node birth time is simply the node number t 5 1, 2, …. To model
similarity, we randomly place nodes on a circle that represents the
simplest similarity space. That is, the angular distances between nodes
model their similarity distances, such as the cosine similarity or any
other measure22–24. The simplest way to model a balance between popu-
larity and similarity is then to establish new connections that optimize
the product between popularity and similarity. In other words, the
model is simply as follows: (1) initially the network is empty; (2) at
time t $ 1, new node t appears at a random angular position ht on the
circle; and (3) new node t connects to a subset of existing nodes s, s , t,
consisting of the m nodes with the m smallest values of product shst,
where m is a parameter controlling the average node degree k~2m, and
hst is the angular distance between nodes s and t (Fig. 1a, b). At early
times t # m, node t connects to all the existing nodes.

This model has an interesting geometric interpretation, shown in
Fig. 1c. Specifically, after mapping birth time t of a node to its radial
coordinate rt via rt 5 ln t, all nodes lie not on a circle but on a plane—
their polar coordinates are (rt, ht). It then turns out that new nodes

connect simply to the closest m nodes on the plane, except that
distances are not Euclidean but hyperbolic25. The hyperbolic distance
between two nodes at polar coordinates (rs, hs) and (rt, ht) is approxi-
mately xst 5 rs 1 rt 1 ln(hst/2) 5 ln(sthst/2). Therefore the sets of
nodes s minimizing xst or shst for each t are identical. The hyperbolic

1Department of Electrical Engineering, Computer Engineering and Informatics, Cyprus University of Technology, 33 Saripolou Street, 3036 Limassol, Cyprus. 2Cooperative Association for Internet Data
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Figure 1 | Geometric interpretation of popularity 3 similarity
optimization. The nodes (dots) are numbered by their birth times, and located
at random angular (similarity) coordinates. On its birth, the new circled node t
in the yellow annulus connects to m old nodes s minimizing shst. The new
connections are shown by the thicker blue links. In a and b, t 5 3 and m 5 1. In
a, node 3 connects to node 2 because 2h23 5 2p/3 , 1h13 5 5p/6. In b, node 3
connects to node 1 because 1h13 5 2p/3 , 2h23 5p. In c, an optimization-
driven network with m 5 3 is simulated for up to 20 nodes. The radial
(popularity) coordinate of new node t 5 20 is rt 5 ln t, shown by the long thick
arrow. This node connects to the three hyperbolically closest nodes. The red
shape marks the set of points located at hyperbolic distances less than rt from
the new node. Arrows on dots show all nodes drifting away from the crossed
origin, emulating popularity fading as explained in the text. The drift speed in
the network shown corresponds to the degree distribution exponent c 5 2.1.
The outer green circle shows the current network boundary of radius rt 5 ln t
expanding with time t as indicated by green arrows.
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distance is then nothing but a convenient single-metric representation
of a combination of the two attractiveness attributes, radial popularity
and angular similarity. We will use this metric extensively below.

The networks grown as described may seem to have nothing in
common with preferential attachment (PA)2–4. Yet we show in
Fig. 2a that the probability P(k) that an existing node of degree k
attracts a connection from a new node is the same linear function of
k in the described model and in PA. It is not surprising then that the
degree distributions in PA and in our model are the same power laws.
In Supplementary Information section IV, we prove that the exponent
c of this power law approaches 2. Preferential attachment thus emerges
as a process originating from optimization trade-offs between popu-
larity and similarity.

However, there are crucial differences between such optimization
and PA. In the latter, new nodes connect with the same probability
P(k) to any nodes of degree k in the network. In the former, new nodes
connect only to specific subsets of such k-degree nodes that are closest
to the new node along the similarity dimension h (Fig. 1c). To quantify,
we compare in Fig. 2b the probability of connection between a pair of
nodes as a function of their hyperbolic distance in the two cases. We see
that close nodes are almost always connected in the optimization
model, whereas in PA the probability of their connection is lower by
an order of magnitude. On the other hand, nodes that are far apart are
never connected in the optimization model, whereas they can be con-
nected in PA. These differences manifest themselves in the strength of
clustering, which is the probability that two nodes connected to the
same node are also connected to each other. In PA, clustering is
asymptotically zero26, whereas it is strong in many real networks5,6.

We show in Supplementary Information section IV that the described
optimization model leads to clustering that is the strongest possible for
networks with a given degree distribution.

The strength of clustering and the power-law exponent can both be
adjusted to arbitrary values via the following model modifications. We
first consider the effect of popularity fading, observed in many real
networks27,28. We note that the closer the node to the centre in Fig. 1c,
the more popular it is: the higher its degree, and the more new con-
nections it attracts, which explains why PA emerges in the model.
Therefore to model popularity fading, we let all nodes drift away from
the centre such that the radial coordinate of node s at time t . s is
increasing as rs(t) 5 brs 1 (1 2 b)rt, where rs 5 ln s and rt 5 ln t, and
parameter b g [0, 1]. This modification is identical to minimizing
sbhst (or sbha

st with b 5 b/a) instead of shst. It changes the power-law
exponent to c 5 1 1 1/b $ 2. If b 5 1, the nodes do not move and
c 5 2. If b 5 0, all nodes move with the maximum speed, always lying
on the circle of radius rt, while the network degenerates to a random
geometric graph growing on the circle. PA emerges at any c 5 1 1 1/b
since the attraction probability P(k) is a linear function of degree k,
P(k) / k 1 m(c 2 2), the same as in PA4. We prove these statements
in Supplementary Information sections IV–VII, where we also show
that the popular fitness model10 can be mapped to our geometric
optimization framework by letting different nodes drift away with
different speeds (Supplementary Information section V).

Because the strongest clustering is due to connections to the closest
nodes, to weaken clustering we allow connections to more-distant
nodes. Connecting to the m closest nodes is approximately the same
as connecting to nodes lying within distance Rt < rt (see Fig. 1c and
Supplementary Information section IV, where we derive the exact
expression for Rt, which controls the average degree in the network).
If new nodes t establish connections to existing nodes s at hyperbolic
distance xst with probability p(xst) 5 1/{1 1 exp[(xst 2 Rt)/T]}, where
parameter T $ 0 is the network temperature (see Supplementary
Information sections IV and VI), then clustering is a decreasing func-
tion of temperature. That is, temperature is the parameter controlling
clustering in the network. At zero temperature, the connection
probability p(xst) is either 1 or 0 depending on whether distance xst
is less or greater than Rt, so that we recover the strongest clustering case
above, where new nodes connect only to the closest existing nodes.
Clustering gradually decreases to zero at T 5 1, and remains
asymptotically zero for any T $ 1 (Supplementary Information
sections IV, VI). At high temperatures T R ‘, the model degenerates
either to growing random graphs, or, remarkably, to standard PA
(Supplementary Information section VII).

To investigate if similarity shapes the structure and dynamics of real
networks as our model predicts, we consider a series of historical snap-
shots of the Internet, the E. coli metabolic network, and the social
network of trust relationships between people, also known as the
web of trust (WoT). The first two networks are disassortative (nodes
of dissimilar degrees are connected with a higher probability), while
the third is assortative (nodes of similar degrees are connected with a
higher probability), and its degree distribution deviates from a power
law. We map these networks to their popularity 3 similarity spaces
(Methods Summary). The mapping infers the radial (popularity) and
angular (similarity) coordinates for all nodes, so that we can compute
the hyperbolic distances between all node pairs, and the probabilities of
new connections as functions of the hyperbolic distance between
corresponding nodes. These probabilities are shown in Fig. 3. In all
the three networks, they are close to the theoretical predictions of our
model.

This finding is important for several reasons. First, it shows that real-
world networks evolve as our framework predicts. Specifically, given
the popularity and similarity coordinates of two nodes, they link with
probability close to the theoretical value predicted by the model. The
framework may thus be used for link prediction, a notoriously difficult
and important problem in many disciplines29, with applications
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Figure 2 | Emergence of PA from popularity 3 similarity optimization.
Two growing networks have been simulated up to t 5 105 nodes, one growing
according to the described optimization model, and the other according to PA.
In both networks, each new node connects to m 5 2 existing nodes. The c R 2
limit is not well-defined in PA, so that c 5 2.1 is used instead as described in the
text. a, The probability P(k) that an existing node of degree k attracts a new link.
The solid line is the theoretical prediction, while the dashed line is a linear
function, P(k) / k. b, The probability p(x) that a pair of nodes located at
hyperbolic distance x are connected. The average clustering (over all nodes) in
the optimization and PA networks is !c~0:83 and !c~0:12, respectively.
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distance is then nothing but a convenient single-metric representation
of a combination of the two attractiveness attributes, radial popularity
and angular similarity. We will use this metric extensively below.

The networks grown as described may seem to have nothing in
common with preferential attachment (PA)2–4. Yet we show in
Fig. 2a that the probability P(k) that an existing node of degree k
attracts a connection from a new node is the same linear function of
k in the described model and in PA. It is not surprising then that the
degree distributions in PA and in our model are the same power laws.
In Supplementary Information section IV, we prove that the exponent
c of this power law approaches 2. Preferential attachment thus emerges
as a process originating from optimization trade-offs between popu-
larity and similarity.

However, there are crucial differences between such optimization
and PA. In the latter, new nodes connect with the same probability
P(k) to any nodes of degree k in the network. In the former, new nodes
connect only to specific subsets of such k-degree nodes that are closest
to the new node along the similarity dimension h (Fig. 1c). To quantify,
we compare in Fig. 2b the probability of connection between a pair of
nodes as a function of their hyperbolic distance in the two cases. We see
that close nodes are almost always connected in the optimization
model, whereas in PA the probability of their connection is lower by
an order of magnitude. On the other hand, nodes that are far apart are
never connected in the optimization model, whereas they can be con-
nected in PA. These differences manifest themselves in the strength of
clustering, which is the probability that two nodes connected to the
same node are also connected to each other. In PA, clustering is
asymptotically zero26, whereas it is strong in many real networks5,6.

We show in Supplementary Information section IV that the described
optimization model leads to clustering that is the strongest possible for
networks with a given degree distribution.

The strength of clustering and the power-law exponent can both be
adjusted to arbitrary values via the following model modifications. We
first consider the effect of popularity fading, observed in many real
networks27,28. We note that the closer the node to the centre in Fig. 1c,
the more popular it is: the higher its degree, and the more new con-
nections it attracts, which explains why PA emerges in the model.
Therefore to model popularity fading, we let all nodes drift away from
the centre such that the radial coordinate of node s at time t . s is
increasing as rs(t) 5 brs 1 (1 2 b)rt, where rs 5 ln s and rt 5 ln t, and
parameter b g [0, 1]. This modification is identical to minimizing
sbhst (or sbha

st with b 5 b/a) instead of shst. It changes the power-law
exponent to c 5 1 1 1/b $ 2. If b 5 1, the nodes do not move and
c 5 2. If b 5 0, all nodes move with the maximum speed, always lying
on the circle of radius rt, while the network degenerates to a random
geometric graph growing on the circle. PA emerges at any c 5 1 1 1/b
since the attraction probability P(k) is a linear function of degree k,
P(k) / k 1 m(c 2 2), the same as in PA4. We prove these statements
in Supplementary Information sections IV–VII, where we also show
that the popular fitness model10 can be mapped to our geometric
optimization framework by letting different nodes drift away with
different speeds (Supplementary Information section V).

Because the strongest clustering is due to connections to the closest
nodes, to weaken clustering we allow connections to more-distant
nodes. Connecting to the m closest nodes is approximately the same
as connecting to nodes lying within distance Rt < rt (see Fig. 1c and
Supplementary Information section IV, where we derive the exact
expression for Rt, which controls the average degree in the network).
If new nodes t establish connections to existing nodes s at hyperbolic
distance xst with probability p(xst) 5 1/{1 1 exp[(xst 2 Rt)/T]}, where
parameter T $ 0 is the network temperature (see Supplementary
Information sections IV and VI), then clustering is a decreasing func-
tion of temperature. That is, temperature is the parameter controlling
clustering in the network. At zero temperature, the connection
probability p(xst) is either 1 or 0 depending on whether distance xst
is less or greater than Rt, so that we recover the strongest clustering case
above, where new nodes connect only to the closest existing nodes.
Clustering gradually decreases to zero at T 5 1, and remains
asymptotically zero for any T $ 1 (Supplementary Information
sections IV, VI). At high temperatures T R ‘, the model degenerates
either to growing random graphs, or, remarkably, to standard PA
(Supplementary Information section VII).

To investigate if similarity shapes the structure and dynamics of real
networks as our model predicts, we consider a series of historical snap-
shots of the Internet, the E. coli metabolic network, and the social
network of trust relationships between people, also known as the
web of trust (WoT). The first two networks are disassortative (nodes
of dissimilar degrees are connected with a higher probability), while
the third is assortative (nodes of similar degrees are connected with a
higher probability), and its degree distribution deviates from a power
law. We map these networks to their popularity 3 similarity spaces
(Methods Summary). The mapping infers the radial (popularity) and
angular (similarity) coordinates for all nodes, so that we can compute
the hyperbolic distances between all node pairs, and the probabilities of
new connections as functions of the hyperbolic distance between
corresponding nodes. These probabilities are shown in Fig. 3. In all
the three networks, they are close to the theoretical predictions of our
model.

This finding is important for several reasons. First, it shows that real-
world networks evolve as our framework predicts. Specifically, given
the popularity and similarity coordinates of two nodes, they link with
probability close to the theoretical value predicted by the model. The
framework may thus be used for link prediction, a notoriously difficult
and important problem in many disciplines29, with applications
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Figure 2 | Emergence of PA from popularity 3 similarity optimization.
Two growing networks have been simulated up to t 5 105 nodes, one growing
according to the described optimization model, and the other according to PA.
In both networks, each new node connects to m 5 2 existing nodes. The c R 2
limit is not well-defined in PA, so that c 5 2.1 is used instead as described in the
text. a, The probability P(k) that an existing node of degree k attracts a new link.
The solid line is the theoretical prediction, while the dashed line is a linear
function, P(k) / k. b, The probability p(x) that a pair of nodes located at
hyperbolic distance x are connected. The average clustering (over all nodes) in
the optimization and PA networks is !c~0:83 and !c~0:12, respectively.

RESEARCH LETTER

2 | N A T U R E | V O L 0 0 0 | 0 0 M O N T H 2 0 1 2

Macmillan Publishers Limited. All rights reserved©2012

ranging from predicting protein interactions or terrorist connections
to designing recommender and collaborative filtering systems30.
Second, Fig. 3 directly validates our framework and its core mech-
anism. It is not surprising then that, as a consequence, the synthetic
graphs that the model generates are remarkably similar to real net-
works across a range of metrics (Supplementary Information section
IX), implying that the framework can be also used for accurate
modelling of real network topologies. We review related work in
Supplementary Information section X, and to the best of our knowledge,
there is no other model that would simultaneously: (1) be simple and
universal, that is, applicable to many different networks, (2) have a
similarity space as its core component, (3) cast PA as an emergent
phenomenon, (4) generate graphs similar to real networks across a wide
range of metrics, and (5) validate the proposed growth mechanism
directly. Validation is usually limited to comparing certain graph
metrics, such as degree distribution, between modelled and real net-
works; however, this ‘validates’ a consequence of the mechanism, not
the mechanism itself. Direct validation is usually difficult, because pro-
posed mechanisms tend to incorporate many unmeasurable factors—
economic or political factors in Internet evolution, for example. Our
approach is no different in that it cannot measure all the factors or node
attributes contributing to node similarity in any of the considered real
networks. Yet, the angular distances between nodes in our approach can
be considered as projections of properly weighted combinations of all
such similarity factors affecting network evolution, and we can infer
these distances using statistical inference methods, directly validating
the growth mechanism.

To summarize, popularity is attractive, but so is similarity.
Neglecting the latter would lead to severe aberrations. Within the
Internet, for example, a local network in Nebraska would connect
directly to a local network in Tibet, in the same way as on the web, a
person not even knowing about Tartini or free solo climbing would
suddenly link her page to these subjects. The probability of such
dissimilar connections is very low in reality, and the stronger the
similarity forces, the smaller this probability is. Neglecting the network
similarity structure leads to overestimations or underestimations of
the probability of dissimilar or similar connections by orders of mag-
nitude (Fig. 3). However, one cannot tell the difference between our
framework and PA by examining node degrees only. The probability
that an existing node of degree k attracts a new link optimizing popu-
larity 3 similarity is exactly the same linear function of k as in PA
(Fig. 2a). Supplementary Fig. 1 shows that this function is indeed
realized in the considered real networks, re-validating effective PA
for these networks. Therefore the popularity 3 similarity optimization
approach provides a natural geometric explanation for the following
‘dilemmas’ characteristic of PA. On the one hand, PA has been vali-
dated for many real networks, while on the other hand, it requires
exogenous mechanisms to explain not only strong clustering, but also
linear popularity preference, and how such preference can emerge in
real networks, where nodes do not have any global information about
the network structure. As PA appears as an emergent phenomenon in
the framework developed here, our framework provides a simple and
natural resolution to these dilemmas, and this resolution is directly
validated against large-scale evolution of very different real networks.

We conclude with the observation that to know the closest nodes in
the hyperbolic popularity 3 similarity space requires precise global
information about all node locations. However, non-zero tempera-
tures smooth out the sharp connectivity perimeter threshold in
Fig. 1c, thus modelling reality where this proximity information is
not precise and mixed with errors and noise. In that respect, PA is a
limiting regime with similarity forces reduced to nothing but noise.

METHODS SUMMARY
To infer the radial ri and angular hi coordinates for each node i in a real network
snapshot with adjacency matrix aij, i, j 5 1, 2, …, t, we use the Markov Chain
Monte Carlo (MCMC) method described in detail in Supplementary Information.
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Figure 3 | Popularity 3 similarity optimization for three different
networks. a, The growing Internet; b, E. coli metabolic network; and c, pretty-
good-privacy (PGP) web of trust (WoT) between people. Each plot shows the
probability of connections between new and old nodes, as a function of the
hyperbolic (popularity 3 similarity) distance x between them in the real
networks (circles and squares) and in PA emulations (diamonds and triangles).
To emulate PA, new links are disconnected from old nodes to which these
links are connected in the real networks, and reconnected to old nodes
according to PA. For a pair of historical network snapshots S0 (older) and S1

(newer), new nodes are the nodes present in S1 but not in S0, and old nodes are
the nodes present both in S1 and S0. Each plot shows the data for two pairs of
such historical snapshots. The solid curve in each plot is the theoretical
connection probability in the optimization model with the parameters
corresponding to a given real network. Because the probability of new
connections in the real networks is close to the theoretical curves, the shown
data demonstrate that these networks grow as the popularity 3 similarity
optimization model predicts, whereas PA, accounting only for popularity, is off
by orders of magnitude in predicting the connections between similar (small x)
or dissimilar (large x) nodes. To quantify this inaccuracy, the insets show the
ratio between the connection probabilities in PA emulations and in the real
networks, that is, the ratios of the values shown by diamonds and circles, and by
triangles and squares in the main plots. The x-axes in the insets are the same as
in the main plots.
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Derived from AI / machine learning 
targeted at link prediction  
rather than behavior estimation 

Scoring methods 
based on a predictor function score(x,y)  
using measures such as number of common neighbors,  
Jaccard coefficients, Katz’ distance  

computes the list of scores of pairs (x,y) of a network observed over [t0,t1] 

predicts new links for t>t1 according to decreasing values of score, among the 
non-connected pairs during [t0,t1] 

SCORING METHODS - I

(Liben-Nowell, Kleinberg, 2003)

History and ontology
SNA Concepts and Approaches

Knowledge networks

Position analysis
Community detection / topological analysis
Two-mode networks

Behavior estimation: processus of link creation

Histograms

“Econometric” models (regressions)

Scoring methods

“The Link Prediction Problem

for Social Networks”,

Liben-Nowell, Kleinberg, 2003

� common neighbors, degree, etc.

“Implicit Structure and the

Dynamics of Blogspace”, Adar,

Adamic et al., 2004

� classifiers based on common neighbors,

content, etc.

graph distance (negated) length of shortest path between x and y

common neighbors |Γ(x) ∩ Γ(y)|
Jaccard’s coefficient |�(x)⇧�(y)|

|�(x)⌅�(y)|
Adamic/Adar

⇥
z⇤�(x)⇧�(y)

1
log |�(z)|

preferential attachment |Γ(x)| · |Γ(y)|
Katz⇥

⇥⇥
⌅=1 ⇥

⌅ · |paths⌃⌅⌥x,y|

where paths⌃⌅⌥x,y := {paths of length exactly ⇧ from x to y}
weighted: paths⌃1⌥x,y := number of collaborations between x, y.
unweighted: paths⌃1⌥x,y := 1 iff x and y collaborate.

hitting time −Hx,y

stationary-normed −Hx,y · ⌅y
commute time −(Hx,y + Hy,x)

stationary-normed −(Hx,y · ⌅y + Hy,x · ⌅x)

where Hx,y := expected time for random walk from x to reach y
⌅y := stationary distribution weight of y

(proportion of time the random walk is at node y)
rooted PageRank� stationary distribution weight of y under the following random walk:

with probability �, jump to x.
with probability 1 − �, go to random neighbor of current node.

SimRank⇤

�
1 if x = y

⇤ ·
∑

a��(x)

∑
b��(y) score(a,b)

|�(x)|·|�(y)| otherwise

Figure 2: Values for score(x, y) under various predictors; each predicts pairs ⟨x, y⟩ in descending
order of score(x, y). The set Γ(x) consists of the neighbors of the node x in Gcollab .

Evaluating a link predictor. Each link predictor p that we consider outputs a ranked list Lp of
pairs in A×A−Eold ; these are predicted new collaborations, in decreasing order of confidence. For
our evaluation, we focus on the set Core, so we define E�

new := Enew ∩(Core×Core) and n := |E�
new |.

Our performance measure for predictor p is then determined as follows: from the ranked list Lp, we
take the first n pairs in Core × Core, and determine the size of the intersection of this set of pairs
with the set E�

new .

3 Methods for Link Prediction

In this section, we survey an array of methods for link prediction. All the methods assign a
connection weight score(x, y) to pairs of nodes ⟨x, y⟩, based on the input graph Gcollab , and then
produce a ranked list in decreasing order of score(x, y). Thus, they can be viewed as computing a
measure of proximity or “similarity” between nodes x and y, relative to the network topology. In
general, the methods are adapted from techniques used in graph theory and social network analysis;
in a number of cases, these techniques were not designed to measure node-to-node similarity, and
hence need to be modified for this purpose. Figure 2 summarizes most of these measures; below we
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Classifier-based methods 
using a variety of features altogether: 
number of common linked blogs 
common URLs 
textual cosine similarity  
degree similarity 

and SVM-classifiers or  
classical logistic regressions  
in order to predict the existence 
(or not) of: 

one-way / two-way links,  

explicit infection links

SCORING METHODS - II

(Adar, Adamic, 2004)

representing a blog.  Visually we place each node at the 

vertical position corresponding to the date on which the blog 

posted an entry containing a specific URL.  Links in the tree 

between the nodes show how infection may have spread for a 

specific URL. The constructed trees have been made

available as a web service.  Through the service users can 

enter a URL from the May crawl data.  The system will 

automatically produce figures representing the explicit link 

structure.  Note that the current public system only contains 

edges inferred through the two-class link inference SVM. 

Two infection graphs are built for each URL.  The first, a 

directed-acyclic graph (DAG), contains all possible links A !

B that are either explicitly defined in the blog network or 

identified as being plausible infection routes by the classifier 

(as long as Tinfection(B) <= Tinfection (A)).  Our system has also 

extracted the limited “via” information available in posts and 

those explicit links are labeled with a different color.  We 

found that these trees contain a great number of edges, 

making them difficult to interpret.  To address this issue we 

label each link with an inference score and allow users to 

dynamically control the threshold for display.  Additionally, 

we build a simpler sparse tree that will attempt to “anchor” 

each blog by only the most likely edge (generating a true tree).  

This is achieved through the pseudo-algorithm described 

below. We use the following definitions:

• Let via(A, URLx) be the set of blogs indicated by 

blog A as the explicit sources of  URLx.  Each blog B 

in this set must further conform to Tinfection(B) <= 

Tinfection (A).

• Let explicit_directed(A,URLx) be the set of blogs 

that blog A explicitly links to and which are also 

infected by URLx. Each blog B in this set must 

further conform to Tinfection(B) <= Tinfection (A).

• Let explicit_reverse(A,URLx) be the set of blogs that

have an unreciprocated link to A that were infected 

by URLx prior to A.

• Let inferred (A,URLx) be the set of blogs that have 

been inferred by the classifier with timing 

restrictions

For each blog, A, infected by URLx or algorithm is as 

follows. For the first non-empty set in (via(A, URLx),

explicit_directed(A, URLx), explicit_reverse(A, URLx), 

inferred(A, URLx)), draw a link to each blog B in that set (e.g. 

if via(A, URLx) is non-empty, draw link to each blog B in that 

set else check the next set).  If more than one link exists 

between A and a previously infected blog use the classifier 

score, to remove all but the highest scoring link.  Note that the 

algorithm does not guarantee that an “upward” link will be 

generated for each blog.  For example, the earliest infected 

blog clearly can not be anchored to any source.  

A further refinement allows us to incorporate blogs that 

we did not know were infected or that are outside our sample.  

This is done by using the via data.  For example, 

boingboing.net is a popular blog that had mentioned the Giant 

Microbes site on May 14th, but this particular post was 

missed by the crawler .  Our system, however, notes that a via 

link exists from an infected blog to boingboing.net in the 

Giant Microbes post.  Adding boingboing.net into the network 

“explains” three additional sites that attribute the infection to 

it.  A node for boingboing.net is generated and the Tinfection is 

set to one day earlier than the earliest node claiming infection 

by the boingboing site.  If the via information points at a node 

not in our blog database a virtual “Other” node is generated 

and placed in the tree.

Both the complete DAG and “most likely” tree are 

visually laid out in layers for each day in a timeline style.  The 

layout is done using the Graphviz tool [9].  This data is then 

imported into our exploratory graph analysis tool, Zoomgraph 

[2].  Zoomgraph functions as an applet allowing for the 

exploration of large graphs in a zoomable UI (infinite plane, 

infinite zoom).  Using the Zoomgraph language we also allow 

Dave Barry

wendy.bozzysworld.com

That Brad Guy BoingBoing

Shift..com

Giant Microbes

(http://www.giantmicrobes.com)

CNN story on Walmart

(http://money.cnn.com/2003/05/06/news/companies/walmart_mags/index.htm)

Figure 4a-b.  Two depictions of the “most likely” infection trees determined by the algorithm described in 

Section 4.  Thick red links (e.g. shift.com ! boingboing) are “via” links.  Thin blue links (e.g. 

wendy.bozzysworld.com ! Dave Barry) are explicit links and the slightly thicker green links (e.g. 

thatbradguy.com ! Dave Barry) are inferred links. Figure 4a represents a longer running infection for the Giant 

Microbes site and 4b a short topical infection (a CNN news article).
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Hierarchical structure and the prediction of missing
links in networks
Aaron Clauset1,3, Cristopher Moore1,2,3 & M. E. J. Newman3,4

Networks have in recent years emerged as an invaluable tool for
describing and quantifying complex systems in many branches of
science1–3. Recent studies suggest that networks often exhibit hier-
archical organization, in which vertices divide into groups that
further subdivide into groups of groups, and so forth over multiple
scales. In many cases the groups are found to correspond to known
functional units, such as ecological niches in food webs, modules
in biochemical networks (protein interaction networks, metabolic
networks or genetic regulatory networks) or communities in social
networks4–7. Here we present a general technique for inferring
hierarchical structure from network data and show that the exist-
ence of hierarchy can simultaneously explain and quantitatively
reproduce many commonly observed topological properties of
networks, such as right-skewed degree distributions, high cluster-
ing coefficients and short path lengths. We further show that
knowledge of hierarchical structure can be used to predict missing
connections in partly known networks with high accuracy, and for
more general network structures than competing techniques8.
Taken together, our results suggest that hierarchy is a central
organizing principle of complex networks, capable of offering
insight into many network phenomena.

Much recent work has been devoted to the study of clustering and
community structure in networks5,6,9–11. Hierarchical structure goes
beyond simple clustering, however, by explicitly including organiza-
tion at all scales in a network simultaneously. Conventionally, hier-
archical structure is represented by a tree, or dendrogram, in which
closely related pairs of vertices have lowest common ancestors that
are lower in the tree than those of more distantly related pairs (see
Fig. 1). We expect the probability of a connection between two ver-
tices to depend on their degree of relatedness. Structure of this type
can be modelled mathematically by using a probabilistic approach in
which we endow each internal node r of the dendrogram with a
probability pr and then connect each pair of vertices for which r is
the lowest common ancestor independently with probability pr

(Fig. 1).
This model, which we call a hierarchical random graph, is similar

in spirit to (although different in realization from) the tree-based
models used in some studies of network search and navigation12,13.
Like most work on community structure, it assumes that commu-
nities at each level of organization are disjoint. Overlapping com-
munities have occasionally been studied (see, for example, ref. 14)
and could be represented with a more elaborate probabilistic model;
however, as we discuss below, the present model already captures
many of the structural features of interest.

Given a dendrogram and a set of probabilities pr, the hierarchical
random graph model allows us to generate artificial networks with a
specified hierarchical structure, a procedure that might be useful in
certain situations. Our goal here, however, is a different one. We wish

to detect and analyse the hierarchical structure, if any, of networks in
the real world. We accomplish this by fitting the hierarchical model
to observed network data by using the tools of statistical inference,
combining a maximum-likelihood approach15 with a Monte Carlo
sampling algorithm16 on the space of all possible dendrograms. This
technique allows us to sample hierarchical random graphs with prob-
ability proportional to the likelihood that they generate the observed
network. To obtain the results described below we combine informa-
tion from a large number of such samples, each of which is a rea-
sonably likely model of the data.

The success of this approach relies on the flexible nature of our
hierarchical model, which allows us to fit a wide range of network
structures. The traditional picture of communities or modules in a
network, for example, corresponds to connections that are dense
within groups of vertices and sparse between them—a behaviour
called ‘assortativity’ in the literature17. The hierarchical random

1Department of Computer Science, and 2Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87131, USA. 3Santa Fe Institute, 1399 Hyde Park
Road, Santa Fe, New Mexico 87501, USA. 4Department of Physics and Center for the Study of Complex Systems, University of Michigan, Ann Arbor, Michigan 48109, USA.

Figure 1 | A hierarchical network with structure on many scales, and the
corresponding hierarchical random graph. Each internal node r of the
dendrogram is associated with a probability pr that a pair of vertices in the
left and right subtrees of that node are connected. (The shades of the internal
nodes in the figure represent the probabilities.)
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and could be represented with a more elaborate probabilistic model;
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ing coefficients and short path lengths. We further show that
knowledge of hierarchical structure can be used to predict missing
connections in partly known networks with high accuracy, and for
more general network structures than competing techniques8.
Taken together, our results suggest that hierarchy is a central
organizing principle of complex networks, capable of offering
insight into many network phenomena.

Much recent work has been devoted to the study of clustering and
community structure in networks5,6,9–11. Hierarchical structure goes
beyond simple clustering, however, by explicitly including organiza-
tion at all scales in a network simultaneously. Conventionally, hier-
archical structure is represented by a tree, or dendrogram, in which
closely related pairs of vertices have lowest common ancestors that
are lower in the tree than those of more distantly related pairs (see
Fig. 1). We expect the probability of a connection between two ver-
tices to depend on their degree of relatedness. Structure of this type
can be modelled mathematically by using a probabilistic approach in
which we endow each internal node r of the dendrogram with a
probability pr and then connect each pair of vertices for which r is
the lowest common ancestor independently with probability pr

(Fig. 1).
This model, which we call a hierarchical random graph, is similar

in spirit to (although different in realization from) the tree-based
models used in some studies of network search and navigation12,13.
Like most work on community structure, it assumes that commu-
nities at each level of organization are disjoint. Overlapping com-
munities have occasionally been studied (see, for example, ref. 14)
and could be represented with a more elaborate probabilistic model;
however, as we discuss below, the present model already captures
many of the structural features of interest.

Given a dendrogram and a set of probabilities pr, the hierarchical
random graph model allows us to generate artificial networks with a
specified hierarchical structure, a procedure that might be useful in
certain situations. Our goal here, however, is a different one. We wish

to detect and analyse the hierarchical structure, if any, of networks in
the real world. We accomplish this by fitting the hierarchical model
to observed network data by using the tools of statistical inference,
combining a maximum-likelihood approach15 with a Monte Carlo
sampling algorithm16 on the space of all possible dendrograms. This
technique allows us to sample hierarchical random graphs with prob-
ability proportional to the likelihood that they generate the observed
network. To obtain the results described below we combine informa-
tion from a large number of such samples, each of which is a rea-
sonably likely model of the data.

The success of this approach relies on the flexible nature of our
hierarchical model, which allows us to fit a wide range of network
structures. The traditional picture of communities or modules in a
network, for example, corresponds to connections that are dense
within groups of vertices and sparse between them—a behaviour
called ‘assortativity’ in the literature17. The hierarchical random
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Figure 1 | A hierarchical network with structure on many scales, and the
corresponding hierarchical random graph. Each internal node r of the
dendrogram is associated with a probability pr that a pair of vertices in the
left and right subtrees of that node are connected. (The shades of the internal
nodes in the figure represent the probabilities.)
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networks8 and for the metabolic and terrorist networks studied here
(Fig. 3a, b). Indeed, for the metabolic network the shortest-path
heuristic performs better than our algorithm.

However, these simple methods can be misleading for networks
that exhibit more general types of structure. In food webs, for
instance, pairs of predators often share prey species but rarely
prey on each other. In such situations a common-neighbour or
shortest-path-based method would predict connections between
predators where none exists. The hierarchical model, by contrast, is
capable of expressing both assortative and disassortative structure
and, as Fig. 3c shows, gives substantially better predictions for the
grassland network. (Indeed, in Fig. 2b there are several groups of
parasitoids that our algorithm has grouped together in a disassorta-
tive community, in which they prey on the same herbivore but not on
each other.) The hierarchical method thus makes accurate predic-
tions for a wider range of network structures than the previous
methods.

In the applications above, we have assumed for simplicity that
there are no false positives in our network data; that is, that every
observed edge corresponds to a real interaction. In networks in which
false positives may be present, however, they too could be predicted
by using the same approach: we would simply look for pairs of
vertices that have a low average probability of connection within
the hierarchical random graph but are connected in the observed
network.

The method described here could also be extended to incorporate
domain-specific information, such as species’ morphological or
behavioural traits for food webs28 or phylogenetic or binding-domain
data for biochemical networks23, by adjusting the probabilities of
edges accordingly. As the results above show, however, we can obtain
good predictions even in the absence of such information, indicating
that topology alone can provide rich insights.

In closing, we note that our approach differs crucially from
previous work on hierarchical structure in networks1,4–7,9,11,30 in that
it acknowledges explicitly that most real-world networks have many
plausible hierarchical representations of roughly equal likelihood.
Previous work, by contrast, has typically sought a single hierarchical
representation for a given network. By sampling an ensemble of
dendrograms, our approach avoids over-fitting the data and allows
us to explain many common topological features, to generate
resampled networks with similar structure to the original, to derive
a clear and concise summary of a network’s structure by means of
its consensus dendrogram, and to accurately predict missing connec-
tions in a wide variety of situations.

METHODS SUMMARY
Computer code implementing many of the analysis methods described in this
paper can be found online at http://www.santafe.edu/,aaronc/randomgraphs/.
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23. Szilágyi, A., Grimm, V., Arakaki, A. K. & Skolnick, J. Prediction of physical
protein–protein interactions. Phys. Biol. 2, S1–S16 (2005).

 

 

 

 

0
 

 

0.4

0.6

0.8

A
U

C

0.2 0.4 0.6 0.8 1.0 0
0.4

0.6

0.8

0.4 0.6 1.0 0
0.4

0.6

0.8

0.2 0.4 0.6 0.8 1.0
Fraction of edges observed

0.2 0.8

cb1.0a 1.0 1.0
Pure chance
Common neighbours
Jaccard coefficient
Degree product
Shortest paths
Hierarchical structure

Figure 3 | Comparison of link prediction methods. Average AUC statistic—
that is, the probability of ranking a true positive over a true negative—as a
function of the fraction of connections known to the algorithm, for the link

prediction method presented here and a variety of previously published
methods. a, Terrorist association network; b, T. pallidum metabolic
network; c, grassland species network.
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Fig. 1. Stochastic block models. A stochastic block model is fully specified
by a partition of nodes into groups and a matrix Q in which each element Qαβ

represents the probability that a node in group α connects to a node in group
β. (A), A simple matrix of probabilities Q. Nodes are divided in three groups
(which contain 4, 5, and 6 nodes, respectively) and are represented as squares,
circles, and triangles depending on their group. The value of each element
Qαβ is indicated by the shade of gray; for example, squares do not connect
to other squares, and connect to triangles with small probability, but squares
connect to circles with high probability. (B) A realization of the model in A.
In this realization, the number of links between the square and the triangle
group is l!△ = 4, whereas the maximum possible number of links between
these groups is r!△ = 24.

groups and the probability that two nodes are connected depends
only on the groups to which they belong (Fig. 1).

Stochastic block models are empirically grounded in that they
capture two ubiquitous and fundamental properties of real com-
plex networks. First, nodes in real networks are often organized
into modules or communities (15, 16), which may overlap (17)
or be hierarchically nested (11, 18, 19), so that connections are
relatively more abundant within modules than between modules.
In most real-world networks, this modularity is significantly larger
than expected from chance (16, 20). Second, nodes in real net-
works fulfill distinct roles and connect to each other depending on
these roles (13, 16). Role-to-role connections are not necessarily
assortative (16, 21); that is, nodes with a certain role may or may
not tend to connect with other nodes with the same role. In gen-
eral, stochastic block models are particularly appropriate when
nodes belong to groups and interact with each other depending
on their group membership (regardless of whether interactions
occur mostly within groups or between groups).

Stochastic block models are also appropriate in that they can
capture other more general connectivity correlations in the net-
work. For example, if people establish social connections with
others according to age, then a block model that partitions indi-
viduals into age groups will capture some of the correlations in
the network.

In general, complex networks result from a combination of
mechanisms, including modularity, role structure, and maybe
other factors. Although partitions into modules, roles, and age
groups, for example, can be very different from each other, some
block model in the MBM family is likely to capture each of them
separately; by sampling over all models M ∈ MBM we capture a
variety of correlations, ideally to the exact degree that they are
relevant.

Additionally, stochastic block models are analytically tractable
because in a stochastic block model the probability that nodes i and
j are connected depends only on the groups to which they belong
(14). Therefore, we can calculate the reliability of individual links
and the reliability of entire networks.

Link Reliability: Missing and Spurious Interactions
The reliability of an individual link is RL

ij ≡ pBM(Aij = 1|AO), that
is, the probability that the link “truly” exists given our observation
of the whole network (and our choice of the family of stochastic
block models). Assuming no prior knowledge about the suitability
of the models, we obtain (Materials and Methods)

RL
ij = 1

Z

∑

P∈P

(
lO
σiσj

+ 1

rσiσj + 2

)

exp[−H(P)], [3]

where the sum is over partitions P in the space P of all possible
partitions of the network into groups, σi is node i’s group (in parti-
tion P), lO

αβ is the number of links in the observed network between
groups α and β, and rαβ is the maximum possible number of links
between α and β (Fig. 1). The function H(P) is a function of the
partition

H(P) =
∑

α≤β

[

ln(rαβ + 1) + ln
(

rαβ

lO
αβ

)]

, [4]

and Z = ∑
P∈P exp[−H(P)].

In practice, it is not possible to sum over all partitions even for
small networks.† However, since Eq. 3 has the same mathemat-
ical form as an ensemble average in statistical mechanics (22),
one can use the Metropolis algorithm to correctly sample relevant
partitions (that is, partitions that significantly contribute to the
sum) and obtain estimates for the link reliability (Materials and
Methods).

We use the link reliability to identify missing and spurious inter-
actions in network observations. We evaluate the performance of
our approach using five high-quality networks: the social network
of interactions between people in a karate club (23), the social
network of frequent associations between 62 dolphins (24), the
air transportation network of Eastern Europe (25), the neural
network of the nematode Caenorhabditis elegans (26), and the
metabolic network of Escherichia coli (27, 28). All of these net-
works have been manually curated and are widely used in the
literature as model systems. Therefore, in what follows we assume
that each of these networks is the “true” network AT and is error-
free. We then generate hypothetical observations AO by adding or
removing random connections from AT , and evaluate the ability
of our approach to recover the features of the true network.‡

To quantitatively study missing interactions, we generate
observed networks AO by removing random links from the true
network AT . We then estimate the link reliability RL

ij for each of
these false negatives (AO

ij = 0 and AT
ij = 1), as well as for the

true negatives (AO
ij = 0 and AT

ij = 0). We measure the algorithm’s
ability to identify missing interactions by ranking the reliabilities
(in decreasing order) and calculating the probability that a false
negative has a higher ranking than a true negative (11). Similarly,
we quantify the ability to identify spurious interactions by adding
random links to the true network, obtaining and ranking the link
reliabilities (again, in decreasing order), and calculating the prob-
ability that a false positive (AO

ij = 1 and AT
ij = 0) is ranked lower

than a true positive (AO
ij = 1 and AT

ij = 1).
In Fig. 2, we compare our approach to the hierarchical ran-

dom graph (HRG) approach of Clauset et al. (11) and to a local
algorithm based on the number of common neighbors between
each pair of nodes [Materials and Methods; see also Fig. S1 in
supporting information (SI) Appendix for a comparison to other
local algorithms] (11, 29). We find that, except for one network,
our approach consistently outperforms all others at identifying
both missing interactions and spurious interactions. Our approach
is also the only one that performs consistently well for all networks
(unlike local algorithms, which work well for some networks but
very poorly for others) and for both missing and spurious interac-
tions (unlike the HRG algorithm, which performs comparatively

†The number of distinct partitions of N elements into groups is∑N
k=1

1
k!

∑k
l=1

(k
l
)

(−1)k−l lN , which grows faster than any finite power of N.
‡By adding and removing connections in this way, we are implicitly focusing on random

errors; we discuss at the end how our approach can also deal with systematic (or, in
general, correlated) errors.
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Fig. 1. Stochastic block models. A stochastic block model is fully specified
by a partition of nodes into groups and a matrix Q in which each element Qαβ

represents the probability that a node in group α connects to a node in group
β. (A), A simple matrix of probabilities Q. Nodes are divided in three groups
(which contain 4, 5, and 6 nodes, respectively) and are represented as squares,
circles, and triangles depending on their group. The value of each element
Qαβ is indicated by the shade of gray; for example, squares do not connect
to other squares, and connect to triangles with small probability, but squares
connect to circles with high probability. (B) A realization of the model in A.
In this realization, the number of links between the square and the triangle
group is l!△ = 4, whereas the maximum possible number of links between
these groups is r!△ = 24.

groups and the probability that two nodes are connected depends
only on the groups to which they belong (Fig. 1).

Stochastic block models are empirically grounded in that they
capture two ubiquitous and fundamental properties of real com-
plex networks. First, nodes in real networks are often organized
into modules or communities (15, 16), which may overlap (17)
or be hierarchically nested (11, 18, 19), so that connections are
relatively more abundant within modules than between modules.
In most real-world networks, this modularity is significantly larger
than expected from chance (16, 20). Second, nodes in real net-
works fulfill distinct roles and connect to each other depending on
these roles (13, 16). Role-to-role connections are not necessarily
assortative (16, 21); that is, nodes with a certain role may or may
not tend to connect with other nodes with the same role. In gen-
eral, stochastic block models are particularly appropriate when
nodes belong to groups and interact with each other depending
on their group membership (regardless of whether interactions
occur mostly within groups or between groups).

Stochastic block models are also appropriate in that they can
capture other more general connectivity correlations in the net-
work. For example, if people establish social connections with
others according to age, then a block model that partitions indi-
viduals into age groups will capture some of the correlations in
the network.

In general, complex networks result from a combination of
mechanisms, including modularity, role structure, and maybe
other factors. Although partitions into modules, roles, and age
groups, for example, can be very different from each other, some
block model in the MBM family is likely to capture each of them
separately; by sampling over all models M ∈ MBM we capture a
variety of correlations, ideally to the exact degree that they are
relevant.

Additionally, stochastic block models are analytically tractable
because in a stochastic block model the probability that nodes i and
j are connected depends only on the groups to which they belong
(14). Therefore, we can calculate the reliability of individual links
and the reliability of entire networks.

Link Reliability: Missing and Spurious Interactions
The reliability of an individual link is RL

ij ≡ pBM(Aij = 1|AO), that
is, the probability that the link “truly” exists given our observation
of the whole network (and our choice of the family of stochastic
block models). Assuming no prior knowledge about the suitability
of the models, we obtain (Materials and Methods)

RL
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)

exp[−H(P)], [3]

where the sum is over partitions P in the space P of all possible
partitions of the network into groups, σi is node i’s group (in parti-
tion P), lO

αβ is the number of links in the observed network between
groups α and β, and rαβ is the maximum possible number of links
between α and β (Fig. 1). The function H(P) is a function of the
partition

H(P) =
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ln(rαβ + 1) + ln
(
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, [4]

and Z = ∑
P∈P exp[−H(P)].

In practice, it is not possible to sum over all partitions even for
small networks.† However, since Eq. 3 has the same mathemat-
ical form as an ensemble average in statistical mechanics (22),
one can use the Metropolis algorithm to correctly sample relevant
partitions (that is, partitions that significantly contribute to the
sum) and obtain estimates for the link reliability (Materials and
Methods).

We use the link reliability to identify missing and spurious inter-
actions in network observations. We evaluate the performance of
our approach using five high-quality networks: the social network
of interactions between people in a karate club (23), the social
network of frequent associations between 62 dolphins (24), the
air transportation network of Eastern Europe (25), the neural
network of the nematode Caenorhabditis elegans (26), and the
metabolic network of Escherichia coli (27, 28). All of these net-
works have been manually curated and are widely used in the
literature as model systems. Therefore, in what follows we assume
that each of these networks is the “true” network AT and is error-
free. We then generate hypothetical observations AO by adding or
removing random connections from AT , and evaluate the ability
of our approach to recover the features of the true network.‡

To quantitatively study missing interactions, we generate
observed networks AO by removing random links from the true
network AT . We then estimate the link reliability RL

ij for each of
these false negatives (AO

ij = 0 and AT
ij = 1), as well as for the

true negatives (AO
ij = 0 and AT

ij = 0). We measure the algorithm’s
ability to identify missing interactions by ranking the reliabilities
(in decreasing order) and calculating the probability that a false
negative has a higher ranking than a true negative (11). Similarly,
we quantify the ability to identify spurious interactions by adding
random links to the true network, obtaining and ranking the link
reliabilities (again, in decreasing order), and calculating the prob-
ability that a false positive (AO

ij = 1 and AT
ij = 0) is ranked lower

than a true positive (AO
ij = 1 and AT

ij = 1).
In Fig. 2, we compare our approach to the hierarchical ran-

dom graph (HRG) approach of Clauset et al. (11) and to a local
algorithm based on the number of common neighbors between
each pair of nodes [Materials and Methods; see also Fig. S1 in
supporting information (SI) Appendix for a comparison to other
local algorithms] (11, 29). We find that, except for one network,
our approach consistently outperforms all others at identifying
both missing interactions and spurious interactions. Our approach
is also the only one that performs consistently well for all networks
(unlike local algorithms, which work well for some networks but
very poorly for others) and for both missing and spurious interac-
tions (unlike the HRG algorithm, which performs comparatively
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Fig. 1. Stochastic block models. A stochastic block model is fully specified
by a partition of nodes into groups and a matrix Q in which each element Qαβ

represents the probability that a node in group α connects to a node in group
β. (A), A simple matrix of probabilities Q. Nodes are divided in three groups
(which contain 4, 5, and 6 nodes, respectively) and are represented as squares,
circles, and triangles depending on their group. The value of each element
Qαβ is indicated by the shade of gray; for example, squares do not connect
to other squares, and connect to triangles with small probability, but squares
connect to circles with high probability. (B) A realization of the model in A.
In this realization, the number of links between the square and the triangle
group is l!△ = 4, whereas the maximum possible number of links between
these groups is r!△ = 24.

groups and the probability that two nodes are connected depends
only on the groups to which they belong (Fig. 1).

Stochastic block models are empirically grounded in that they
capture two ubiquitous and fundamental properties of real com-
plex networks. First, nodes in real networks are often organized
into modules or communities (15, 16), which may overlap (17)
or be hierarchically nested (11, 18, 19), so that connections are
relatively more abundant within modules than between modules.
In most real-world networks, this modularity is significantly larger
than expected from chance (16, 20). Second, nodes in real net-
works fulfill distinct roles and connect to each other depending on
these roles (13, 16). Role-to-role connections are not necessarily
assortative (16, 21); that is, nodes with a certain role may or may
not tend to connect with other nodes with the same role. In gen-
eral, stochastic block models are particularly appropriate when
nodes belong to groups and interact with each other depending
on their group membership (regardless of whether interactions
occur mostly within groups or between groups).

Stochastic block models are also appropriate in that they can
capture other more general connectivity correlations in the net-
work. For example, if people establish social connections with
others according to age, then a block model that partitions indi-
viduals into age groups will capture some of the correlations in
the network.

In general, complex networks result from a combination of
mechanisms, including modularity, role structure, and maybe
other factors. Although partitions into modules, roles, and age
groups, for example, can be very different from each other, some
block model in the MBM family is likely to capture each of them
separately; by sampling over all models M ∈ MBM we capture a
variety of correlations, ideally to the exact degree that they are
relevant.

Additionally, stochastic block models are analytically tractable
because in a stochastic block model the probability that nodes i and
j are connected depends only on the groups to which they belong
(14). Therefore, we can calculate the reliability of individual links
and the reliability of entire networks.

Link Reliability: Missing and Spurious Interactions
The reliability of an individual link is RL

ij ≡ pBM(Aij = 1|AO), that
is, the probability that the link “truly” exists given our observation
of the whole network (and our choice of the family of stochastic
block models). Assuming no prior knowledge about the suitability
of the models, we obtain (Materials and Methods)

RL
ij = 1

Z

∑

P∈P

(
lO
σiσj

+ 1

rσiσj + 2

)

exp[−H(P)], [3]

where the sum is over partitions P in the space P of all possible
partitions of the network into groups, σi is node i’s group (in parti-
tion P), lO

αβ is the number of links in the observed network between
groups α and β, and rαβ is the maximum possible number of links
between α and β (Fig. 1). The function H(P) is a function of the
partition

H(P) =
∑

α≤β

[

ln(rαβ + 1) + ln
(

rαβ

lO
αβ

)]

, [4]

and Z = ∑
P∈P exp[−H(P)].

In practice, it is not possible to sum over all partitions even for
small networks.† However, since Eq. 3 has the same mathemat-
ical form as an ensemble average in statistical mechanics (22),
one can use the Metropolis algorithm to correctly sample relevant
partitions (that is, partitions that significantly contribute to the
sum) and obtain estimates for the link reliability (Materials and
Methods).

We use the link reliability to identify missing and spurious inter-
actions in network observations. We evaluate the performance of
our approach using five high-quality networks: the social network
of interactions between people in a karate club (23), the social
network of frequent associations between 62 dolphins (24), the
air transportation network of Eastern Europe (25), the neural
network of the nematode Caenorhabditis elegans (26), and the
metabolic network of Escherichia coli (27, 28). All of these net-
works have been manually curated and are widely used in the
literature as model systems. Therefore, in what follows we assume
that each of these networks is the “true” network AT and is error-
free. We then generate hypothetical observations AO by adding or
removing random connections from AT , and evaluate the ability
of our approach to recover the features of the true network.‡

To quantitatively study missing interactions, we generate
observed networks AO by removing random links from the true
network AT . We then estimate the link reliability RL

ij for each of
these false negatives (AO

ij = 0 and AT
ij = 1), as well as for the

true negatives (AO
ij = 0 and AT

ij = 0). We measure the algorithm’s
ability to identify missing interactions by ranking the reliabilities
(in decreasing order) and calculating the probability that a false
negative has a higher ranking than a true negative (11). Similarly,
we quantify the ability to identify spurious interactions by adding
random links to the true network, obtaining and ranking the link
reliabilities (again, in decreasing order), and calculating the prob-
ability that a false positive (AO

ij = 1 and AT
ij = 0) is ranked lower

than a true positive (AO
ij = 1 and AT

ij = 1).
In Fig. 2, we compare our approach to the hierarchical ran-

dom graph (HRG) approach of Clauset et al. (11) and to a local
algorithm based on the number of common neighbors between
each pair of nodes [Materials and Methods; see also Fig. S1 in
supporting information (SI) Appendix for a comparison to other
local algorithms] (11, 29). We find that, except for one network,
our approach consistently outperforms all others at identifying
both missing interactions and spurious interactions. Our approach
is also the only one that performs consistently well for all networks
(unlike local algorithms, which work well for some networks but
very poorly for others) and for both missing and spurious interac-
tions (unlike the HRG algorithm, which performs comparatively
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Fig. 1. Stochastic block models. A stochastic block model is fully specified
by a partition of nodes into groups and a matrix Q in which each element Qαβ

represents the probability that a node in group α connects to a node in group
β. (A), A simple matrix of probabilities Q. Nodes are divided in three groups
(which contain 4, 5, and 6 nodes, respectively) and are represented as squares,
circles, and triangles depending on their group. The value of each element
Qαβ is indicated by the shade of gray; for example, squares do not connect
to other squares, and connect to triangles with small probability, but squares
connect to circles with high probability. (B) A realization of the model in A.
In this realization, the number of links between the square and the triangle
group is l!△ = 4, whereas the maximum possible number of links between
these groups is r!△ = 24.

groups and the probability that two nodes are connected depends
only on the groups to which they belong (Fig. 1).

Stochastic block models are empirically grounded in that they
capture two ubiquitous and fundamental properties of real com-
plex networks. First, nodes in real networks are often organized
into modules or communities (15, 16), which may overlap (17)
or be hierarchically nested (11, 18, 19), so that connections are
relatively more abundant within modules than between modules.
In most real-world networks, this modularity is significantly larger
than expected from chance (16, 20). Second, nodes in real net-
works fulfill distinct roles and connect to each other depending on
these roles (13, 16). Role-to-role connections are not necessarily
assortative (16, 21); that is, nodes with a certain role may or may
not tend to connect with other nodes with the same role. In gen-
eral, stochastic block models are particularly appropriate when
nodes belong to groups and interact with each other depending
on their group membership (regardless of whether interactions
occur mostly within groups or between groups).

Stochastic block models are also appropriate in that they can
capture other more general connectivity correlations in the net-
work. For example, if people establish social connections with
others according to age, then a block model that partitions indi-
viduals into age groups will capture some of the correlations in
the network.

In general, complex networks result from a combination of
mechanisms, including modularity, role structure, and maybe
other factors. Although partitions into modules, roles, and age
groups, for example, can be very different from each other, some
block model in the MBM family is likely to capture each of them
separately; by sampling over all models M ∈ MBM we capture a
variety of correlations, ideally to the exact degree that they are
relevant.

Additionally, stochastic block models are analytically tractable
because in a stochastic block model the probability that nodes i and
j are connected depends only on the groups to which they belong
(14). Therefore, we can calculate the reliability of individual links
and the reliability of entire networks.

Link Reliability: Missing and Spurious Interactions
The reliability of an individual link is RL

ij ≡ pBM(Aij = 1|AO), that
is, the probability that the link “truly” exists given our observation
of the whole network (and our choice of the family of stochastic
block models). Assuming no prior knowledge about the suitability
of the models, we obtain (Materials and Methods)
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partitions of the network into groups, σi is node i’s group (in parti-
tion P), lO

αβ is the number of links in the observed network between
groups α and β, and rαβ is the maximum possible number of links
between α and β (Fig. 1). The function H(P) is a function of the
partition

H(P) =
∑

α≤β

[

ln(rαβ + 1) + ln
(

rαβ

lO
αβ

)]

, [4]

and Z = ∑
P∈P exp[−H(P)].
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one can use the Metropolis algorithm to correctly sample relevant
partitions (that is, partitions that significantly contribute to the
sum) and obtain estimates for the link reliability (Materials and
Methods).

We use the link reliability to identify missing and spurious inter-
actions in network observations. We evaluate the performance of
our approach using five high-quality networks: the social network
of interactions between people in a karate club (23), the social
network of frequent associations between 62 dolphins (24), the
air transportation network of Eastern Europe (25), the neural
network of the nematode Caenorhabditis elegans (26), and the
metabolic network of Escherichia coli (27, 28). All of these net-
works have been manually curated and are widely used in the
literature as model systems. Therefore, in what follows we assume
that each of these networks is the “true” network AT and is error-
free. We then generate hypothetical observations AO by adding or
removing random connections from AT , and evaluate the ability
of our approach to recover the features of the true network.‡

To quantitatively study missing interactions, we generate
observed networks AO by removing random links from the true
network AT . We then estimate the link reliability RL

ij for each of
these false negatives (AO

ij = 0 and AT
ij = 1), as well as for the

true negatives (AO
ij = 0 and AT

ij = 0). We measure the algorithm’s
ability to identify missing interactions by ranking the reliabilities
(in decreasing order) and calculating the probability that a false
negative has a higher ranking than a true negative (11). Similarly,
we quantify the ability to identify spurious interactions by adding
random links to the true network, obtaining and ranking the link
reliabilities (again, in decreasing order), and calculating the prob-
ability that a false positive (AO

ij = 1 and AT
ij = 0) is ranked lower

than a true positive (AO
ij = 1 and AT

ij = 1).
In Fig. 2, we compare our approach to the hierarchical ran-

dom graph (HRG) approach of Clauset et al. (11) and to a local
algorithm based on the number of common neighbors between
each pair of nodes [Materials and Methods; see also Fig. S1 in
supporting information (SI) Appendix for a comparison to other
local algorithms] (11, 29). We find that, except for one network,
our approach consistently outperforms all others at identifying
both missing interactions and spurious interactions. Our approach
is also the only one that performs consistently well for all networks
(unlike local algorithms, which work well for some networks but
very poorly for others) and for both missing and spurious interac-
tions (unlike the HRG algorithm, which performs comparatively
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groups and the probability that two nodes are connected depends
only on the groups to which they belong (Fig. 1).

Stochastic block models are empirically grounded in that they
capture two ubiquitous and fundamental properties of real com-
plex networks. First, nodes in real networks are often organized
into modules or communities (15, 16), which may overlap (17)
or be hierarchically nested (11, 18, 19), so that connections are
relatively more abundant within modules than between modules.
In most real-world networks, this modularity is significantly larger
than expected from chance (16, 20). Second, nodes in real net-
works fulfill distinct roles and connect to each other depending on
these roles (13, 16). Role-to-role connections are not necessarily
assortative (16, 21); that is, nodes with a certain role may or may
not tend to connect with other nodes with the same role. In gen-
eral, stochastic block models are particularly appropriate when
nodes belong to groups and interact with each other depending
on their group membership (regardless of whether interactions
occur mostly within groups or between groups).

Stochastic block models are also appropriate in that they can
capture other more general connectivity correlations in the net-
work. For example, if people establish social connections with
others according to age, then a block model that partitions indi-
viduals into age groups will capture some of the correlations in
the network.

In general, complex networks result from a combination of
mechanisms, including modularity, role structure, and maybe
other factors. Although partitions into modules, roles, and age
groups, for example, can be very different from each other, some
block model in the MBM family is likely to capture each of them
separately; by sampling over all models M ∈ MBM we capture a
variety of correlations, ideally to the exact degree that they are
relevant.

Additionally, stochastic block models are analytically tractable
because in a stochastic block model the probability that nodes i and
j are connected depends only on the groups to which they belong
(14). Therefore, we can calculate the reliability of individual links
and the reliability of entire networks.

Link Reliability: Missing and Spurious Interactions
The reliability of an individual link is RL

ij ≡ pBM(Aij = 1|AO), that
is, the probability that the link “truly” exists given our observation
of the whole network (and our choice of the family of stochastic
block models). Assuming no prior knowledge about the suitability
of the models, we obtain (Materials and Methods)
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where the sum is over partitions P in the space P of all possible
partitions of the network into groups, σi is node i’s group (in parti-
tion P), lO

αβ is the number of links in the observed network between
groups α and β, and rαβ is the maximum possible number of links
between α and β (Fig. 1). The function H(P) is a function of the
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In practice, it is not possible to sum over all partitions even for
small networks.† However, since Eq. 3 has the same mathemat-
ical form as an ensemble average in statistical mechanics (22),
one can use the Metropolis algorithm to correctly sample relevant
partitions (that is, partitions that significantly contribute to the
sum) and obtain estimates for the link reliability (Materials and
Methods).

We use the link reliability to identify missing and spurious inter-
actions in network observations. We evaluate the performance of
our approach using five high-quality networks: the social network
of interactions between people in a karate club (23), the social
network of frequent associations between 62 dolphins (24), the
air transportation network of Eastern Europe (25), the neural
network of the nematode Caenorhabditis elegans (26), and the
metabolic network of Escherichia coli (27, 28). All of these net-
works have been manually curated and are widely used in the
literature as model systems. Therefore, in what follows we assume
that each of these networks is the “true” network AT and is error-
free. We then generate hypothetical observations AO by adding or
removing random connections from AT , and evaluate the ability
of our approach to recover the features of the true network.‡

To quantitatively study missing interactions, we generate
observed networks AO by removing random links from the true
network AT . We then estimate the link reliability RL

ij for each of
these false negatives (AO

ij = 0 and AT
ij = 1), as well as for the

true negatives (AO
ij = 0 and AT

ij = 0). We measure the algorithm’s
ability to identify missing interactions by ranking the reliabilities
(in decreasing order) and calculating the probability that a false
negative has a higher ranking than a true negative (11). Similarly,
we quantify the ability to identify spurious interactions by adding
random links to the true network, obtaining and ranking the link
reliabilities (again, in decreasing order), and calculating the prob-
ability that a false positive (AO

ij = 1 and AT
ij = 0) is ranked lower

than a true positive (AO
ij = 1 and AT

ij = 1).
In Fig. 2, we compare our approach to the hierarchical ran-

dom graph (HRG) approach of Clauset et al. (11) and to a local
algorithm based on the number of common neighbors between
each pair of nodes [Materials and Methods; see also Fig. S1 in
supporting information (SI) Appendix for a comparison to other
local algorithms] (11, 29). We find that, except for one network,
our approach consistently outperforms all others at identifying
both missing interactions and spurious interactions. Our approach
is also the only one that performs consistently well for all networks
(unlike local algorithms, which work well for some networks but
very poorly for others) and for both missing and spurious interac-
tions (unlike the HRG algorithm, which performs comparatively
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Fig. 1. Stochastic block models. A stochastic block model is fully specified
by a partition of nodes into groups and a matrix Q in which each element Qαβ

represents the probability that a node in group α connects to a node in group
β. (A), A simple matrix of probabilities Q. Nodes are divided in three groups
(which contain 4, 5, and 6 nodes, respectively) and are represented as squares,
circles, and triangles depending on their group. The value of each element
Qαβ is indicated by the shade of gray; for example, squares do not connect
to other squares, and connect to triangles with small probability, but squares
connect to circles with high probability. (B) A realization of the model in A.
In this realization, the number of links between the square and the triangle
group is l!△ = 4, whereas the maximum possible number of links between
these groups is r!△ = 24.

groups and the probability that two nodes are connected depends
only on the groups to which they belong (Fig. 1).

Stochastic block models are empirically grounded in that they
capture two ubiquitous and fundamental properties of real com-
plex networks. First, nodes in real networks are often organized
into modules or communities (15, 16), which may overlap (17)
or be hierarchically nested (11, 18, 19), so that connections are
relatively more abundant within modules than between modules.
In most real-world networks, this modularity is significantly larger
than expected from chance (16, 20). Second, nodes in real net-
works fulfill distinct roles and connect to each other depending on
these roles (13, 16). Role-to-role connections are not necessarily
assortative (16, 21); that is, nodes with a certain role may or may
not tend to connect with other nodes with the same role. In gen-
eral, stochastic block models are particularly appropriate when
nodes belong to groups and interact with each other depending
on their group membership (regardless of whether interactions
occur mostly within groups or between groups).

Stochastic block models are also appropriate in that they can
capture other more general connectivity correlations in the net-
work. For example, if people establish social connections with
others according to age, then a block model that partitions indi-
viduals into age groups will capture some of the correlations in
the network.

In general, complex networks result from a combination of
mechanisms, including modularity, role structure, and maybe
other factors. Although partitions into modules, roles, and age
groups, for example, can be very different from each other, some
block model in the MBM family is likely to capture each of them
separately; by sampling over all models M ∈ MBM we capture a
variety of correlations, ideally to the exact degree that they are
relevant.

Additionally, stochastic block models are analytically tractable
because in a stochastic block model the probability that nodes i and
j are connected depends only on the groups to which they belong
(14). Therefore, we can calculate the reliability of individual links
and the reliability of entire networks.

Link Reliability: Missing and Spurious Interactions
The reliability of an individual link is RL

ij ≡ pBM(Aij = 1|AO), that
is, the probability that the link “truly” exists given our observation
of the whole network (and our choice of the family of stochastic
block models). Assuming no prior knowledge about the suitability
of the models, we obtain (Materials and Methods)

RL
ij = 1

Z

∑

P∈P

(
lO
σiσj

+ 1

rσiσj + 2

)

exp[−H(P)], [3]

where the sum is over partitions P in the space P of all possible
partitions of the network into groups, σi is node i’s group (in parti-
tion P), lO

αβ is the number of links in the observed network between
groups α and β, and rαβ is the maximum possible number of links
between α and β (Fig. 1). The function H(P) is a function of the
partition

H(P) =
∑

α≤β

[

ln(rαβ + 1) + ln
(

rαβ
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)]

, [4]

and Z = ∑
P∈P exp[−H(P)].

In practice, it is not possible to sum over all partitions even for
small networks.† However, since Eq. 3 has the same mathemat-
ical form as an ensemble average in statistical mechanics (22),
one can use the Metropolis algorithm to correctly sample relevant
partitions (that is, partitions that significantly contribute to the
sum) and obtain estimates for the link reliability (Materials and
Methods).

We use the link reliability to identify missing and spurious inter-
actions in network observations. We evaluate the performance of
our approach using five high-quality networks: the social network
of interactions between people in a karate club (23), the social
network of frequent associations between 62 dolphins (24), the
air transportation network of Eastern Europe (25), the neural
network of the nematode Caenorhabditis elegans (26), and the
metabolic network of Escherichia coli (27, 28). All of these net-
works have been manually curated and are widely used in the
literature as model systems. Therefore, in what follows we assume
that each of these networks is the “true” network AT and is error-
free. We then generate hypothetical observations AO by adding or
removing random connections from AT , and evaluate the ability
of our approach to recover the features of the true network.‡

To quantitatively study missing interactions, we generate
observed networks AO by removing random links from the true
network AT . We then estimate the link reliability RL

ij for each of
these false negatives (AO

ij = 0 and AT
ij = 1), as well as for the

true negatives (AO
ij = 0 and AT

ij = 0). We measure the algorithm’s
ability to identify missing interactions by ranking the reliabilities
(in decreasing order) and calculating the probability that a false
negative has a higher ranking than a true negative (11). Similarly,
we quantify the ability to identify spurious interactions by adding
random links to the true network, obtaining and ranking the link
reliabilities (again, in decreasing order), and calculating the prob-
ability that a false positive (AO

ij = 1 and AT
ij = 0) is ranked lower

than a true positive (AO
ij = 1 and AT

ij = 1).
In Fig. 2, we compare our approach to the hierarchical ran-

dom graph (HRG) approach of Clauset et al. (11) and to a local
algorithm based on the number of common neighbors between
each pair of nodes [Materials and Methods; see also Fig. S1 in
supporting information (SI) Appendix for a comparison to other
local algorithms] (11, 29). We find that, except for one network,
our approach consistently outperforms all others at identifying
both missing interactions and spurious interactions. Our approach
is also the only one that performs consistently well for all networks
(unlike local algorithms, which work well for some networks but
very poorly for others) and for both missing and spurious interac-
tions (unlike the HRG algorithm, which performs comparatively
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groups and the probability that two nodes are connected depends
only on the groups to which they belong (Fig. 1).

Stochastic block models are empirically grounded in that they
capture two ubiquitous and fundamental properties of real com-
plex networks. First, nodes in real networks are often organized
into modules or communities (15, 16), which may overlap (17)
or be hierarchically nested (11, 18, 19), so that connections are
relatively more abundant within modules than between modules.
In most real-world networks, this modularity is significantly larger
than expected from chance (16, 20). Second, nodes in real net-
works fulfill distinct roles and connect to each other depending on
these roles (13, 16). Role-to-role connections are not necessarily
assortative (16, 21); that is, nodes with a certain role may or may
not tend to connect with other nodes with the same role. In gen-
eral, stochastic block models are particularly appropriate when
nodes belong to groups and interact with each other depending
on their group membership (regardless of whether interactions
occur mostly within groups or between groups).

Stochastic block models are also appropriate in that they can
capture other more general connectivity correlations in the net-
work. For example, if people establish social connections with
others according to age, then a block model that partitions indi-
viduals into age groups will capture some of the correlations in
the network.

In general, complex networks result from a combination of
mechanisms, including modularity, role structure, and maybe
other factors. Although partitions into modules, roles, and age
groups, for example, can be very different from each other, some
block model in the MBM family is likely to capture each of them
separately; by sampling over all models M ∈ MBM we capture a
variety of correlations, ideally to the exact degree that they are
relevant.

Additionally, stochastic block models are analytically tractable
because in a stochastic block model the probability that nodes i and
j are connected depends only on the groups to which they belong
(14). Therefore, we can calculate the reliability of individual links
and the reliability of entire networks.

Link Reliability: Missing and Spurious Interactions
The reliability of an individual link is RL

ij ≡ pBM(Aij = 1|AO), that
is, the probability that the link “truly” exists given our observation
of the whole network (and our choice of the family of stochastic
block models). Assuming no prior knowledge about the suitability
of the models, we obtain (Materials and Methods)
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where the sum is over partitions P in the space P of all possible
partitions of the network into groups, σi is node i’s group (in parti-
tion P), lO

αβ is the number of links in the observed network between
groups α and β, and rαβ is the maximum possible number of links
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and Z = ∑
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In practice, it is not possible to sum over all partitions even for
small networks.† However, since Eq. 3 has the same mathemat-
ical form as an ensemble average in statistical mechanics (22),
one can use the Metropolis algorithm to correctly sample relevant
partitions (that is, partitions that significantly contribute to the
sum) and obtain estimates for the link reliability (Materials and
Methods).

We use the link reliability to identify missing and spurious inter-
actions in network observations. We evaluate the performance of
our approach using five high-quality networks: the social network
of interactions between people in a karate club (23), the social
network of frequent associations between 62 dolphins (24), the
air transportation network of Eastern Europe (25), the neural
network of the nematode Caenorhabditis elegans (26), and the
metabolic network of Escherichia coli (27, 28). All of these net-
works have been manually curated and are widely used in the
literature as model systems. Therefore, in what follows we assume
that each of these networks is the “true” network AT and is error-
free. We then generate hypothetical observations AO by adding or
removing random connections from AT , and evaluate the ability
of our approach to recover the features of the true network.‡

To quantitatively study missing interactions, we generate
observed networks AO by removing random links from the true
network AT . We then estimate the link reliability RL

ij for each of
these false negatives (AO

ij = 0 and AT
ij = 1), as well as for the

true negatives (AO
ij = 0 and AT

ij = 0). We measure the algorithm’s
ability to identify missing interactions by ranking the reliabilities
(in decreasing order) and calculating the probability that a false
negative has a higher ranking than a true negative (11). Similarly,
we quantify the ability to identify spurious interactions by adding
random links to the true network, obtaining and ranking the link
reliabilities (again, in decreasing order), and calculating the prob-
ability that a false positive (AO

ij = 1 and AT
ij = 0) is ranked lower

than a true positive (AO
ij = 1 and AT

ij = 1).
In Fig. 2, we compare our approach to the hierarchical ran-

dom graph (HRG) approach of Clauset et al. (11) and to a local
algorithm based on the number of common neighbors between
each pair of nodes [Materials and Methods; see also Fig. S1 in
supporting information (SI) Appendix for a comparison to other
local algorithms] (11, 29). We find that, except for one network,
our approach consistently outperforms all others at identifying
both missing interactions and spurious interactions. Our approach
is also the only one that performs consistently well for all networks
(unlike local algorithms, which work well for some networks but
very poorly for others) and for both missing and spurious interac-
tions (unlike the HRG algorithm, which performs comparatively
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Qαβ is indicated by the shade of gray; for example, squares do not connect
to other squares, and connect to triangles with small probability, but squares
connect to circles with high probability. (B) A realization of the model in A.
In this realization, the number of links between the square and the triangle
group is l!△ = 4, whereas the maximum possible number of links between
these groups is r!△ = 24.

groups and the probability that two nodes are connected depends
only on the groups to which they belong (Fig. 1).

Stochastic block models are empirically grounded in that they
capture two ubiquitous and fundamental properties of real com-
plex networks. First, nodes in real networks are often organized
into modules or communities (15, 16), which may overlap (17)
or be hierarchically nested (11, 18, 19), so that connections are
relatively more abundant within modules than between modules.
In most real-world networks, this modularity is significantly larger
than expected from chance (16, 20). Second, nodes in real net-
works fulfill distinct roles and connect to each other depending on
these roles (13, 16). Role-to-role connections are not necessarily
assortative (16, 21); that is, nodes with a certain role may or may
not tend to connect with other nodes with the same role. In gen-
eral, stochastic block models are particularly appropriate when
nodes belong to groups and interact with each other depending
on their group membership (regardless of whether interactions
occur mostly within groups or between groups).

Stochastic block models are also appropriate in that they can
capture other more general connectivity correlations in the net-
work. For example, if people establish social connections with
others according to age, then a block model that partitions indi-
viduals into age groups will capture some of the correlations in
the network.

In general, complex networks result from a combination of
mechanisms, including modularity, role structure, and maybe
other factors. Although partitions into modules, roles, and age
groups, for example, can be very different from each other, some
block model in the MBM family is likely to capture each of them
separately; by sampling over all models M ∈ MBM we capture a
variety of correlations, ideally to the exact degree that they are
relevant.

Additionally, stochastic block models are analytically tractable
because in a stochastic block model the probability that nodes i and
j are connected depends only on the groups to which they belong
(14). Therefore, we can calculate the reliability of individual links
and the reliability of entire networks.

Link Reliability: Missing and Spurious Interactions
The reliability of an individual link is RL

ij ≡ pBM(Aij = 1|AO), that
is, the probability that the link “truly” exists given our observation
of the whole network (and our choice of the family of stochastic
block models). Assuming no prior knowledge about the suitability
of the models, we obtain (Materials and Methods)

RL
ij = 1

Z

∑

P∈P

(
lO
σiσj

+ 1

rσiσj + 2

)

exp[−H(P)], [3]

where the sum is over partitions P in the space P of all possible
partitions of the network into groups, σi is node i’s group (in parti-
tion P), lO

αβ is the number of links in the observed network between
groups α and β, and rαβ is the maximum possible number of links
between α and β (Fig. 1). The function H(P) is a function of the
partition

H(P) =
∑

α≤β

[

ln(rαβ + 1) + ln
(

rαβ

lO
αβ

)]

, [4]

and Z = ∑
P∈P exp[−H(P)].

In practice, it is not possible to sum over all partitions even for
small networks.† However, since Eq. 3 has the same mathemat-
ical form as an ensemble average in statistical mechanics (22),
one can use the Metropolis algorithm to correctly sample relevant
partitions (that is, partitions that significantly contribute to the
sum) and obtain estimates for the link reliability (Materials and
Methods).

We use the link reliability to identify missing and spurious inter-
actions in network observations. We evaluate the performance of
our approach using five high-quality networks: the social network
of interactions between people in a karate club (23), the social
network of frequent associations between 62 dolphins (24), the
air transportation network of Eastern Europe (25), the neural
network of the nematode Caenorhabditis elegans (26), and the
metabolic network of Escherichia coli (27, 28). All of these net-
works have been manually curated and are widely used in the
literature as model systems. Therefore, in what follows we assume
that each of these networks is the “true” network AT and is error-
free. We then generate hypothetical observations AO by adding or
removing random connections from AT , and evaluate the ability
of our approach to recover the features of the true network.‡

To quantitatively study missing interactions, we generate
observed networks AO by removing random links from the true
network AT . We then estimate the link reliability RL

ij for each of
these false negatives (AO

ij = 0 and AT
ij = 1), as well as for the

true negatives (AO
ij = 0 and AT

ij = 0). We measure the algorithm’s
ability to identify missing interactions by ranking the reliabilities
(in decreasing order) and calculating the probability that a false
negative has a higher ranking than a true negative (11). Similarly,
we quantify the ability to identify spurious interactions by adding
random links to the true network, obtaining and ranking the link
reliabilities (again, in decreasing order), and calculating the prob-
ability that a false positive (AO

ij = 1 and AT
ij = 0) is ranked lower

than a true positive (AO
ij = 1 and AT

ij = 1).
In Fig. 2, we compare our approach to the hierarchical ran-

dom graph (HRG) approach of Clauset et al. (11) and to a local
algorithm based on the number of common neighbors between
each pair of nodes [Materials and Methods; see also Fig. S1 in
supporting information (SI) Appendix for a comparison to other
local algorithms] (11, 29). We find that, except for one network,
our approach consistently outperforms all others at identifying
both missing interactions and spurious interactions. Our approach
is also the only one that performs consistently well for all networks
(unlike local algorithms, which work well for some networks but
very poorly for others) and for both missing and spurious interac-
tions (unlike the HRG algorithm, which performs comparatively

†The number of distinct partitions of N elements into groups is∑N
k=1

1
k!

∑k
l=1

(k
l
)

(−1)k−l lN , which grows faster than any finite power of N.
‡By adding and removing connections in this way, we are implicitly focusing on random

errors; we discuss at the end how our approach can also deal with systematic (or, in
general, correlated) errors.
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reliability of link ij : 

Network Reliability and Network Reconstruction
The success at detecting both missing and spurious interactions
confirms that our approach is able to uncover the structural fea-
tures of the true network AT . The natural question is thus whether
it is possible to “reconstruct” the observation AO to gain greater
insight into the global structure of AT . This is difficult because, in
general, adding a few candidate missing interactions and remov-
ing a few candidate spurious interactions does not give satisfactory
network reconstructions (one of the main problems being that
one does not know, a priori, how many missing and spurious
interactions there are).

Therefore, the first step toward network reconstruction is to
obtain the network reliability RN

A ≡ pBM(A|AO), that is, the prob-
ability that A is the true network given our observation AO (and
our choice of the family of stochastic block models). We obtain
(Materials and Methods)

RN
A = 1

Z

∑

P∈P
h(A; AO, P) exp[−H(P)] , [5]

where

h(A; AO, P) = exp

⎧
⎪⎨

⎪⎩

∑

α≤β

⎡

⎢⎣ln
(

rαβ + 1
2 rαβ + 1

)
+ ln

⎛

⎜⎝

(rαβ

lO
αβ

)

( 2 rαβ

lαβ+lO
αβ

)

⎞

⎟⎠

⎤

⎥⎦

⎫
⎪⎬

⎪⎭
,

[6]

lαβ is the number of links in A between groups α and β, and H(P)
and Z are the same as in Eq. 3. Once more, we use the Metropolis
algorithm to estimate RN

A .
Given the network reliability RN

A = pBM(A|AO), the expected
value of a property X

⟨X ⟩ =
∑

A

X (A) RN
A [7]

over all possible networks A is a better estimate of X (AT ) than
X (AO). We find that in many situations RN

AT ≫ RN
AO (Fig. S13 in

SI Appendix), which means that, presented only with an inaccurate
observation AO (and with the knowledge about complex networks
embodied in the stochastic block model family), our approach is
remarkably able to identify that AT is a more likely network than
the observation AO itself. This confirms that, even without know-
ing AT , it is possible to estimate a property X (AT ) better than just
by measuring that property on AO (that is, better than assuming
X (AT ) = X (AO)).

Since summing over all possible networks in Eq. 7 is prohibitive,
we use the approximation ⟨X ⟩ ≈ X (AR), where AR is the network
that maximizes RN

A (in other words, AR is the maximum a pos-
teriori estimate of A). The network AR is what we call a network
reconstruction, and we claim that X (AR) is, in general, a better esti-
mate of X (AT ) than X (AO). In practice, we build reconstructions
by heuristically maximizing RN

A , starting from AO (Materials and
Methods).

We test our network reconstruction approach by generat-
ing hypothetical observed networks AO from the true test net-
works AT described above. Each observation has a fraction of the
true interactions removed (we call this fraction the observation
error rate), and an identical number of random interactions added.
In Fig. 3 we show the true air transportation network of Eastern
Europe, as well as a hypothetical observation of this network (with
an observation error rate of 20%) and the corresponding recon-
struction. The reconstruction has 13% fewer missing and spurious
interactions than the observation, and qualitatively it appears that
individual node properties (specifically, degree and betweenness
centrality) are also better captured by the reconstruction.

Fig. 3. Reconstruction of the air transportation network of Eastern Europe.
(A) The true air transportation network. The area of each node is proportional
to its betweenness centrality, with Moscow being the most central node in
the network. (B) The observed air transportation network, which we build by
randomly removing 20% of the real links and replacing them by random links.
(C) The reconstructed air transportation network that we obtain, from the
observed network, applying the heuristic reconstruction method described
in the text and methods. For clarity, in B (respectively, C) we do not depict
the correct links, but only (i) missing links in orange, which exist in the true
network but not in the observation (reconstruction) and (ii) spurious links
in blue, which do not exist in the true network but do exist in the obser-
vation (reconstruction). As in A the area of each node is proportional to its
betweenness centrality, with the black circle representing the true between-
ness centrality of each node. The color of each node represents the relative
error in the degree of the node, with respect to the true degree. The observed
network contains 60 missing and 60 spurious links, whereas the reconstruc-
tion only contains 52 of each (a 13% improvement). In general, node degree
and betweenness centrality are also better captured in the reconstruction.
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there has been an increasing attention to the time-related and spatial variability of
the prediction task by considering the local neighborhood of nodes, both in a topo-
logical and temporal manner [Sarkar et al., 2014] and in a semantic fashion (e.g.,
by enriching the set of prediction features with content [Rowe et al., 2012] or so-
called sentiment analysis [Yuan et al., 2014]). Also of note is the recent addition
of evolutionary algorithms to this toolbox: for instance, Bliss et al. [2014] evolve a
weight matrix describing the relative contributions of various similarity measures in
predicting new connections.

Using macro-level structure

Link formation principles may also be infered from the observed network topology.
The most common approach in this stream comes to econometric techniques aimed
at fitting a model whose parameters are associated with specific link formation ef-
fects and which takes the whole network as an input.

Exponential Random Graph Models (ERGMs) famously belong to this class. In
all generality, they rely on the assumption that the observed network has been ran-
domly drawn from a distribution of graphs. The probability of appearance of a given
graph is construed as a parameterization on a choice of typical network formation
processes: be they structural (such as transitivity, reciprocity, balance, etc.) or non-
structural (such as gender dissimilarity, homophily, etc.). The aim is generally to
find parameters maximizing the likelihood of the observed network. Each param-
eter then describes the likely contribution of the corresponding category of link
formation process (e.g., strong transitivity, weak reciprocity). ERGMs have been
introduced by Holland and Leinhardt [1981] through the so-called p1 model de-
scribing the probability of graph G as p1(G) ⇠ exp(Âi livi(G)) = Pi exp(livi(G))
where vi(G) denotes a value related to the i-th process (e.g., transitivity). p1 as-
sumes independence between dyads, which limits the model to simple dyad-centric
observables: principally, degree and reciprocity. It can nonetheless be applied to a
partition of the network into subgroups [Fienberg et al., 1985] or stochastic block-
models [Holland et al., 1983, Anderson et al., 1992], which posits a block structure,
i.e. the fact that distinct groups of actors, or “blocks”, exhibit distinct connection
behaviors; parameters are thus a function of blocks. Frank and Strauss [1986] later
introduced “Markov graphs”, which takes into account dependences between edges
and thus triads and simple star structures, and which was subsequently extended as
the p⇤ model [Wasserman and Pattison, 1996, Anderson et al., 1999, Robins et al.,
2007]. Further generalizations to more complex graph structures have lately been
proposed e.g., for so-called “multi-level networks” [Wang et al., 2013, Brennecke
and Rank, 2016], which are essentially graphs with two types of nodes and three
possible types of links (two intra-type and one inter-type).

When longitudinal data is available, network evolution may be construed as a
stochastic process. Holland and Leinhardt [1977] then Wasserman [1980] proposed
to appraise network dynamics as a (continuous-time) Markov chain. They assumed
that the probability of link appearance or disappearance depends on a limited set of

p1 model

( )C.J. Anderson et al.rSocial Networks 21 1999 37–6646

Table 4

Some parameters and graph statistics for p
U

models

Ž .Type Parameter Graph statistic z x
Label

Dyadic

Choice f LsÝ X s Xi j i j qq
Mutuality r MsÝ X Xi- j i j ji

Triadic

Transitivity t T sÝ X X XT T i , j ,k i j jk i k

Ž .Intransitivity t T sÝ X X 1y XI I i , j ,k i j jk i k

Cyclicity t T sÝ X X XC C i , j ,k i j jk k i

2-in-stars s S sÝ X XI I i , j ,k ji k i

2-out-stars s S sÝ X XO O i , j ,k i j i k

2-mixed-stars s S sÝ X XM M i , j ,k ji i k

r s r sSubgroup effects f B sÝ X di , j i j i j;r s

IndiÕidual leÕel

Ž .Differential expansiveness a X soutdegree degree centralityi iq
Ž .Differential attractiveness b X s indegree degree prestigei q i

The indicator quantity d s1 if i is in the r th subgroup and j is in the sth, and 0 otherwise.i j;r s

Table 4 lists some basic p
U

effects, parameters and their associated explanatory

variables that are commonly used to model social networks. These statistics are

explained at length in the analyses of the examples presented later in this paper. The

primary effects that we have found useful so far are those corresponding to various
Ž . Ždyadic configurations that is, choice and mutuality and triadic configurations that is,

3 Žtransitivity and the 2-stars, as well as ‘subgroup’ effects in which actors are
.partitioned into a fixed set of subgroups, such as age groups .

The function k causes difficulties when fitting p
U

to data. It is a complicated

function of all the parameters, and is hard to differentiate analytically; consequently,
Žmaximum likelihood estimation is difficult, except for very small networks see Walker,

.1995 . An even greater problem with this function is that to work with it computation-

ally, it must be calculated for each possible network with g actors—a very large
Ž g Ž gy1. .number 2 to be exact . Because of these difficulties, we work with another

Ž .version of model 2 , which does not depend on the normalizing constant, and hence, is
Ž .easier to fit albeit approximately .

4.2. Logit models

Ž .The alternative version of model 2 that does not depend on k is a logit model. In a

logit or logistic regression model, the response variable is dichotomous and is coded as a

3
Since the sums in the definitions of the 2-stars in Table 4 are over i, j and k, the effects are counted

twice. As shown in Section 4.3, the explanatory variables in the models are differences between the effect

statistics when a tie is present and when a tie is absent. The relative differences are not affected by the double

counting.

( )C.J. Anderson et al.rSocial Networks 21 1999 37–6652

Table 5

Ž .Estimated parameters, approximate asymptotic standard errors, and pseudo-Wald statistics of the most

complex model fit to the 552 dyads from the friendship data for the fourth-grade class

Effect Explanatory Model Estimated Approximate WaldPL

variable parameter value standard error

same sameChoice L f y2.17 1.15 3.53
differ differL f y4.30 1.17 13.50

gg ggMutual M r 3.15 0.69 20.90
bb bbM r 3.05 0.49 38.54
differ differM r 3.95 0.72 30.43

Expansiveness X a 1.29 1.22 1.121q 1
. . . . .
. . . . .
. . . . .
X a 0.28 1.16 0.0623,q 23

X a 0.00 0.00 –24,q 24

Attractiveness X b y0.94 0.89 1.11q1 1
. . . . .
. . . . .
. . . . .
X b y0.35 0.92 0.15q,23 23

X b 0.00 0.00 –q,24 24

These observations suggest that restricting r ggsr bbsr differ will have a statistically

negligible effect on the fit of the model, but that restricting f samesf differ will lead to a

large reduction in the goodness of fit. Confirmation of these conjectures is obtained from

the pseudo-Wald statistics 8, Wald , and pseudo-likelihood ratio statistics 9, G2 , forPL PL

these restrictions on the parameters, which are reported in Table 6.

Also reported in Table 6 are the pseudo-test statistics that assess the statistical

importance of expansiveness and attractiveness. Although each of the 23 parameters for

each effect could be examined, to assess whether the overall effect of expansiveness or

attractiveness is important, the entire set of 23 parameters for either effect should be

considered simultaneously. This goal is met by imposing the linear restriction a s PPP1

sa s0 for expansiveness and the linear restriction b s PPP sb s0 for popular-23 1 23

ity. In the absence of higher-order terms, the statistics in Table 6 provide evidence of the

necessity of both expansiveness and attractiveness.

The estimated parameters of the model with a single mutuality parameter are reported

in Table 7. While not reported here, we looked at even more restrictive models. The

Wald and G2 statistics for these more restrictive models indicate that no furtherPL PL

simplifications should be made. At this point, another possibility is either to add
Ž .higher-order terms e.g., transitivity or 2-stars or replace individual level terms with

higher-order ones. We fit such models later in Section 7. Before interpreting the

estimated model, we need to assess how well this model actually represents the

friendship network of the fourth-graders.

8
Wald statistics for linear restrictions on parameters were obtained from the ‘TEST’ option available in

SAS LOGISTIC.
9 2 Ž .The G statistics reported here equal the difference between y2 log likelihood for the restricted modelPL

and the more general model.
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there has been an increasing attention to the time-related and spatial variability of
the prediction task by considering the local neighborhood of nodes, both in a topo-
logical and temporal manner [Sarkar et al., 2014] and in a semantic fashion (e.g.,
by enriching the set of prediction features with content [Rowe et al., 2012] or so-
called sentiment analysis [Yuan et al., 2014]). Also of note is the recent addition
of evolutionary algorithms to this toolbox: for instance, Bliss et al. [2014] evolve a
weight matrix describing the relative contributions of various similarity measures in
predicting new connections.

Using macro-level structure

Link formation principles may also be infered from the observed network topology.
The most common approach in this stream comes to econometric techniques aimed
at fitting a model whose parameters are associated with specific link formation ef-
fects and which takes the whole network as an input.

Exponential Random Graph Models (ERGMs) famously belong to this class. In
all generality, they rely on the assumption that the observed network has been ran-
domly drawn from a distribution of graphs. The probability of appearance of a given
graph is construed as a parameterization on a choice of typical network formation
processes: be they structural (such as transitivity, reciprocity, balance, etc.) or non-
structural (such as gender dissimilarity, homophily, etc.). The aim is generally to
find parameters maximizing the likelihood of the observed network. Each param-
eter then describes the likely contribution of the corresponding category of link
formation process (e.g., strong transitivity, weak reciprocity). ERGMs have been
introduced by Holland and Leinhardt [1981] through the so-called p1 model de-
scribing the probability of graph G as p1(G) ⇠ exp(Âi livi(G)) = Pi exp(livi(G))
where vi(G) denotes a value related to the i-th process (e.g., transitivity). p1 as-
sumes independence between dyads, which limits the model to simple dyad-centric
observables: principally, degree and reciprocity. It can nonetheless be applied to a
partition of the network into subgroups [Fienberg et al., 1985] or stochastic block-
models [Holland et al., 1983, Anderson et al., 1992], which posits a block structure,
i.e. the fact that distinct groups of actors, or “blocks”, exhibit distinct connection
behaviors; parameters are thus a function of blocks. Frank and Strauss [1986] later
introduced “Markov graphs”, which takes into account dependences between edges
and thus triads and simple star structures, and which was subsequently extended as
the p⇤ model [Wasserman and Pattison, 1996, Anderson et al., 1999, Robins et al.,
2007]. Further generalizations to more complex graph structures have lately been
proposed e.g., for so-called “multi-level networks” [Wang et al., 2013, Brennecke
and Rank, 2016], which are essentially graphs with two types of nodes and three
possible types of links (two intra-type and one inter-type).

When longitudinal data is available, network evolution may be construed as a
stochastic process. Holland and Leinhardt [1977] then Wasserman [1980] proposed
to appraise network dynamics as a (continuous-time) Markov chain. They assumed
that the probability of link appearance or disappearance depends on a limited set of

p1 model
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Table 4
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models

Ž .Type Parameter Graph statistic z x
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Dyadic

Choice f LsÝ X s Xi j i j qq
Mutuality r MsÝ X Xi- j i j ji

Triadic

Transitivity t T sÝ X X XT T i , j ,k i j jk i k

Ž .Intransitivity t T sÝ X X 1y XI I i , j ,k i j jk i k
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2-in-stars s S sÝ X XI I i , j ,k ji k i

2-out-stars s S sÝ X XO O i , j ,k i j i k

2-mixed-stars s S sÝ X XM M i , j ,k ji i k

r s r sSubgroup effects f B sÝ X di , j i j i j;r s

IndiÕidual leÕel

Ž .Differential expansiveness a X soutdegree degree centralityi iq
Ž .Differential attractiveness b X s indegree degree prestigei q i

The indicator quantity d s1 if i is in the r th subgroup and j is in the sth, and 0 otherwise.i j;r s

Table 4 lists some basic p
U

effects, parameters and their associated explanatory

variables that are commonly used to model social networks. These statistics are

explained at length in the analyses of the examples presented later in this paper. The

primary effects that we have found useful so far are those corresponding to various
Ž . Ždyadic configurations that is, choice and mutuality and triadic configurations that is,

3 Žtransitivity and the 2-stars, as well as ‘subgroup’ effects in which actors are
.partitioned into a fixed set of subgroups, such as age groups .

The function k causes difficulties when fitting p
U

to data. It is a complicated

function of all the parameters, and is hard to differentiate analytically; consequently,
Žmaximum likelihood estimation is difficult, except for very small networks see Walker,

.1995 . An even greater problem with this function is that to work with it computation-

ally, it must be calculated for each possible network with g actors—a very large
Ž g Ž gy1. .number 2 to be exact . Because of these difficulties, we work with another

Ž .version of model 2 , which does not depend on the normalizing constant, and hence, is
Ž .easier to fit albeit approximately .

4.2. Logit models

Ž .The alternative version of model 2 that does not depend on k is a logit model. In a

logit or logistic regression model, the response variable is dichotomous and is coded as a

3
Since the sums in the definitions of the 2-stars in Table 4 are over i, j and k, the effects are counted

twice. As shown in Section 4.3, the explanatory variables in the models are differences between the effect

statistics when a tie is present and when a tie is absent. The relative differences are not affected by the double

counting.
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Table 5

Ž .Estimated parameters, approximate asymptotic standard errors, and pseudo-Wald statistics of the most

complex model fit to the 552 dyads from the friendship data for the fourth-grade class

Effect Explanatory Model Estimated Approximate WaldPL

variable parameter value standard error

same sameChoice L f y2.17 1.15 3.53
differ differL f y4.30 1.17 13.50

gg ggMutual M r 3.15 0.69 20.90
bb bbM r 3.05 0.49 38.54
differ differM r 3.95 0.72 30.43

Expansiveness X a 1.29 1.22 1.121q 1
. . . . .
. . . . .
. . . . .
X a 0.28 1.16 0.0623,q 23

X a 0.00 0.00 –24,q 24

Attractiveness X b y0.94 0.89 1.11q1 1
. . . . .
. . . . .
. . . . .
X b y0.35 0.92 0.15q,23 23

X b 0.00 0.00 –q,24 24

These observations suggest that restricting r ggsr bbsr differ will have a statistically

negligible effect on the fit of the model, but that restricting f samesf differ will lead to a

large reduction in the goodness of fit. Confirmation of these conjectures is obtained from

the pseudo-Wald statistics 8, Wald , and pseudo-likelihood ratio statistics 9, G2 , forPL PL

these restrictions on the parameters, which are reported in Table 6.

Also reported in Table 6 are the pseudo-test statistics that assess the statistical

importance of expansiveness and attractiveness. Although each of the 23 parameters for

each effect could be examined, to assess whether the overall effect of expansiveness or

attractiveness is important, the entire set of 23 parameters for either effect should be

considered simultaneously. This goal is met by imposing the linear restriction a s PPP1

sa s0 for expansiveness and the linear restriction b s PPP sb s0 for popular-23 1 23

ity. In the absence of higher-order terms, the statistics in Table 6 provide evidence of the

necessity of both expansiveness and attractiveness.

The estimated parameters of the model with a single mutuality parameter are reported

in Table 7. While not reported here, we looked at even more restrictive models. The

Wald and G2 statistics for these more restrictive models indicate that no furtherPL PL

simplifications should be made. At this point, another possibility is either to add
Ž .higher-order terms e.g., transitivity or 2-stars or replace individual level terms with

higher-order ones. We fit such models later in Section 7. Before interpreting the

estimated model, we need to assess how well this model actually represents the

friendship network of the fourth-graders.

8
Wald statistics for linear restrictions on parameters were obtained from the ‘TEST’ option available in

SAS LOGISTIC.
9 2 Ž .The G statistics reported here equal the difference between y2 log likelihood for the restricted modelPL

and the more general model.
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there has been an increasing attention to the time-related and spatial variability of
the prediction task by considering the local neighborhood of nodes, both in a topo-
logical and temporal manner [Sarkar et al., 2014] and in a semantic fashion (e.g.,
by enriching the set of prediction features with content [Rowe et al., 2012] or so-
called sentiment analysis [Yuan et al., 2014]). Also of note is the recent addition
of evolutionary algorithms to this toolbox: for instance, Bliss et al. [2014] evolve a
weight matrix describing the relative contributions of various similarity measures in
predicting new connections.

Using macro-level structure

Link formation principles may also be infered from the observed network topology.
The most common approach in this stream comes to econometric techniques aimed
at fitting a model whose parameters are associated with specific link formation ef-
fects and which takes the whole network as an input.

Exponential Random Graph Models (ERGMs) famously belong to this class. In
all generality, they rely on the assumption that the observed network has been ran-
domly drawn from a distribution of graphs. The probability of appearance of a given
graph is construed as a parameterization on a choice of typical network formation
processes: be they structural (such as transitivity, reciprocity, balance, etc.) or non-
structural (such as gender dissimilarity, homophily, etc.). The aim is generally to
find parameters maximizing the likelihood of the observed network. Each param-
eter then describes the likely contribution of the corresponding category of link
formation process (e.g., strong transitivity, weak reciprocity). ERGMs have been
introduced by Holland and Leinhardt [1981] through the so-called p1 model de-
scribing the probability of graph G as p1(G) ⇠ exp(Âi livi(G)) = Pi exp(livi(G))
where vi(G) denotes a value related to the i-th process (e.g., transitivity). p1 as-
sumes independence between dyads, which limits the model to simple dyad-centric
observables: principally, degree and reciprocity. It can nonetheless be applied to a
partition of the network into subgroups [Fienberg et al., 1985] or stochastic block-
models [Holland et al., 1983, Anderson et al., 1992], which posits a block structure,
i.e. the fact that distinct groups of actors, or “blocks”, exhibit distinct connection
behaviors; parameters are thus a function of blocks. Frank and Strauss [1986] later
introduced “Markov graphs”, which takes into account dependences between edges
and thus triads and simple star structures, and which was subsequently extended as
the p⇤ model [Wasserman and Pattison, 1996, Anderson et al., 1999, Robins et al.,
2007]. Further generalizations to more complex graph structures have lately been
proposed e.g., for so-called “multi-level networks” [Wang et al., 2013, Brennecke
and Rank, 2016], which are essentially graphs with two types of nodes and three
possible types of links (two intra-type and one inter-type).

When longitudinal data is available, network evolution may be construed as a
stochastic process. Holland and Leinhardt [1977] then Wasserman [1980] proposed
to appraise network dynamics as a (continuous-time) Markov chain. They assumed
that the probability of link appearance or disappearance depends on a limited set of

p1 model

- p1 assumes independence  
between dyads: 

- limits the model to  
simple dyad-centric  
observables:  
principally,  
degree and reciprocity 

- can nonetheless be applied to:

- a partition of the network into subgroups  Fienberg, Meyer, Wasserman, 1985
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Table 4

Some parameters and graph statistics for p
U

models

Ž .Type Parameter Graph statistic z x
Label

Dyadic

Choice f LsÝ X s Xi j i j qq
Mutuality r MsÝ X Xi- j i j ji

Triadic

Transitivity t T sÝ X X XT T i , j ,k i j jk i k

Ž .Intransitivity t T sÝ X X 1y XI I i , j ,k i j jk i k

Cyclicity t T sÝ X X XC C i , j ,k i j jk k i

2-in-stars s S sÝ X XI I i , j ,k ji k i

2-out-stars s S sÝ X XO O i , j ,k i j i k

2-mixed-stars s S sÝ X XM M i , j ,k ji i k

r s r sSubgroup effects f B sÝ X di , j i j i j;r s

IndiÕidual leÕel

Ž .Differential expansiveness a X soutdegree degree centralityi iq
Ž .Differential attractiveness b X s indegree degree prestigei q i

The indicator quantity d s1 if i is in the r th subgroup and j is in the sth, and 0 otherwise.i j;r s

Table 4 lists some basic p
U

effects, parameters and their associated explanatory

variables that are commonly used to model social networks. These statistics are

explained at length in the analyses of the examples presented later in this paper. The

primary effects that we have found useful so far are those corresponding to various
Ž . Ždyadic configurations that is, choice and mutuality and triadic configurations that is,

3 Žtransitivity and the 2-stars, as well as ‘subgroup’ effects in which actors are
.partitioned into a fixed set of subgroups, such as age groups .

The function k causes difficulties when fitting p
U

to data. It is a complicated

function of all the parameters, and is hard to differentiate analytically; consequently,
Žmaximum likelihood estimation is difficult, except for very small networks see Walker,

.1995 . An even greater problem with this function is that to work with it computation-

ally, it must be calculated for each possible network with g actors—a very large
Ž g Ž gy1. .number 2 to be exact . Because of these difficulties, we work with another

Ž .version of model 2 , which does not depend on the normalizing constant, and hence, is
Ž .easier to fit albeit approximately .

4.2. Logit models

Ž .The alternative version of model 2 that does not depend on k is a logit model. In a

logit or logistic regression model, the response variable is dichotomous and is coded as a

3
Since the sums in the definitions of the 2-stars in Table 4 are over i, j and k, the effects are counted

twice. As shown in Section 4.3, the explanatory variables in the models are differences between the effect

statistics when a tie is present and when a tie is absent. The relative differences are not affected by the double

counting.
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Table 5

Ž .Estimated parameters, approximate asymptotic standard errors, and pseudo-Wald statistics of the most

complex model fit to the 552 dyads from the friendship data for the fourth-grade class

Effect Explanatory Model Estimated Approximate WaldPL

variable parameter value standard error

same sameChoice L f y2.17 1.15 3.53
differ differL f y4.30 1.17 13.50

gg ggMutual M r 3.15 0.69 20.90
bb bbM r 3.05 0.49 38.54
differ differM r 3.95 0.72 30.43

Expansiveness X a 1.29 1.22 1.121q 1
. . . . .
. . . . .
. . . . .
X a 0.28 1.16 0.0623,q 23

X a 0.00 0.00 –24,q 24

Attractiveness X b y0.94 0.89 1.11q1 1
. . . . .
. . . . .
. . . . .
X b y0.35 0.92 0.15q,23 23

X b 0.00 0.00 –q,24 24

These observations suggest that restricting r ggsr bbsr differ will have a statistically

negligible effect on the fit of the model, but that restricting f samesf differ will lead to a

large reduction in the goodness of fit. Confirmation of these conjectures is obtained from

the pseudo-Wald statistics 8, Wald , and pseudo-likelihood ratio statistics 9, G2 , forPL PL

these restrictions on the parameters, which are reported in Table 6.

Also reported in Table 6 are the pseudo-test statistics that assess the statistical

importance of expansiveness and attractiveness. Although each of the 23 parameters for

each effect could be examined, to assess whether the overall effect of expansiveness or

attractiveness is important, the entire set of 23 parameters for either effect should be

considered simultaneously. This goal is met by imposing the linear restriction a s PPP1

sa s0 for expansiveness and the linear restriction b s PPP sb s0 for popular-23 1 23

ity. In the absence of higher-order terms, the statistics in Table 6 provide evidence of the

necessity of both expansiveness and attractiveness.

The estimated parameters of the model with a single mutuality parameter are reported

in Table 7. While not reported here, we looked at even more restrictive models. The

Wald and G2 statistics for these more restrictive models indicate that no furtherPL PL

simplifications should be made. At this point, another possibility is either to add
Ž .higher-order terms e.g., transitivity or 2-stars or replace individual level terms with

higher-order ones. We fit such models later in Section 7. Before interpreting the

estimated model, we need to assess how well this model actually represents the

friendship network of the fourth-graders.

8
Wald statistics for linear restrictions on parameters were obtained from the ‘TEST’ option available in

SAS LOGISTIC.
9 2 Ž .The G statistics reported here equal the difference between y2 log likelihood for the restricted modelPL

and the more general model.
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there has been an increasing attention to the time-related and spatial variability of
the prediction task by considering the local neighborhood of nodes, both in a topo-
logical and temporal manner [Sarkar et al., 2014] and in a semantic fashion (e.g.,
by enriching the set of prediction features with content [Rowe et al., 2012] or so-
called sentiment analysis [Yuan et al., 2014]). Also of note is the recent addition
of evolutionary algorithms to this toolbox: for instance, Bliss et al. [2014] evolve a
weight matrix describing the relative contributions of various similarity measures in
predicting new connections.

Using macro-level structure

Link formation principles may also be infered from the observed network topology.
The most common approach in this stream comes to econometric techniques aimed
at fitting a model whose parameters are associated with specific link formation ef-
fects and which takes the whole network as an input.

Exponential Random Graph Models (ERGMs) famously belong to this class. In
all generality, they rely on the assumption that the observed network has been ran-
domly drawn from a distribution of graphs. The probability of appearance of a given
graph is construed as a parameterization on a choice of typical network formation
processes: be they structural (such as transitivity, reciprocity, balance, etc.) or non-
structural (such as gender dissimilarity, homophily, etc.). The aim is generally to
find parameters maximizing the likelihood of the observed network. Each param-
eter then describes the likely contribution of the corresponding category of link
formation process (e.g., strong transitivity, weak reciprocity). ERGMs have been
introduced by Holland and Leinhardt [1981] through the so-called p1 model de-
scribing the probability of graph G as p1(G) ⇠ exp(Âi livi(G)) = Pi exp(livi(G))
where vi(G) denotes a value related to the i-th process (e.g., transitivity). p1 as-
sumes independence between dyads, which limits the model to simple dyad-centric
observables: principally, degree and reciprocity. It can nonetheless be applied to a
partition of the network into subgroups [Fienberg et al., 1985] or stochastic block-
models [Holland et al., 1983, Anderson et al., 1992], which posits a block structure,
i.e. the fact that distinct groups of actors, or “blocks”, exhibit distinct connection
behaviors; parameters are thus a function of blocks. Frank and Strauss [1986] later
introduced “Markov graphs”, which takes into account dependences between edges
and thus triads and simple star structures, and which was subsequently extended as
the p⇤ model [Wasserman and Pattison, 1996, Anderson et al., 1999, Robins et al.,
2007]. Further generalizations to more complex graph structures have lately been
proposed e.g., for so-called “multi-level networks” [Wang et al., 2013, Brennecke
and Rank, 2016], which are essentially graphs with two types of nodes and three
possible types of links (two intra-type and one inter-type).

When longitudinal data is available, network evolution may be construed as a
stochastic process. Holland and Leinhardt [1977] then Wasserman [1980] proposed
to appraise network dynamics as a (continuous-time) Markov chain. They assumed
that the probability of link appearance or disappearance depends on a limited set of

p1 model

- p1 assumes independence  
between dyads: 

- limits the model to  
simple dyad-centric  
observables:  
principally,  
degree and reciprocity 

- can nonetheless be applied to:

- a partition of the network into subgroups 

- stochastic block-models

Fienberg, Meyer, Wasserman, 1985

Holland, Laskey, Leinhardt, 1983 Anderson, Wasserman, Faust, 1992
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Table 4

Some parameters and graph statistics for p
U

models

Ž .Type Parameter Graph statistic z x
Label

Dyadic

Choice f LsÝ X s Xi j i j qq
Mutuality r MsÝ X Xi- j i j ji

Triadic

Transitivity t T sÝ X X XT T i , j ,k i j jk i k

Ž .Intransitivity t T sÝ X X 1y XI I i , j ,k i j jk i k

Cyclicity t T sÝ X X XC C i , j ,k i j jk k i

2-in-stars s S sÝ X XI I i , j ,k ji k i

2-out-stars s S sÝ X XO O i , j ,k i j i k

2-mixed-stars s S sÝ X XM M i , j ,k ji i k

r s r sSubgroup effects f B sÝ X di , j i j i j;r s

IndiÕidual leÕel

Ž .Differential expansiveness a X soutdegree degree centralityi iq
Ž .Differential attractiveness b X s indegree degree prestigei q i

The indicator quantity d s1 if i is in the r th subgroup and j is in the sth, and 0 otherwise.i j;r s

Table 4 lists some basic p
U

effects, parameters and their associated explanatory

variables that are commonly used to model social networks. These statistics are

explained at length in the analyses of the examples presented later in this paper. The

primary effects that we have found useful so far are those corresponding to various
Ž . Ždyadic configurations that is, choice and mutuality and triadic configurations that is,

3 Žtransitivity and the 2-stars, as well as ‘subgroup’ effects in which actors are
.partitioned into a fixed set of subgroups, such as age groups .

The function k causes difficulties when fitting p
U

to data. It is a complicated

function of all the parameters, and is hard to differentiate analytically; consequently,
Žmaximum likelihood estimation is difficult, except for very small networks see Walker,

.1995 . An even greater problem with this function is that to work with it computation-

ally, it must be calculated for each possible network with g actors—a very large
Ž g Ž gy1. .number 2 to be exact . Because of these difficulties, we work with another

Ž .version of model 2 , which does not depend on the normalizing constant, and hence, is
Ž .easier to fit albeit approximately .

4.2. Logit models

Ž .The alternative version of model 2 that does not depend on k is a logit model. In a

logit or logistic regression model, the response variable is dichotomous and is coded as a

3
Since the sums in the definitions of the 2-stars in Table 4 are over i, j and k, the effects are counted

twice. As shown in Section 4.3, the explanatory variables in the models are differences between the effect

statistics when a tie is present and when a tie is absent. The relative differences are not affected by the double

counting.
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Table 5

Ž .Estimated parameters, approximate asymptotic standard errors, and pseudo-Wald statistics of the most

complex model fit to the 552 dyads from the friendship data for the fourth-grade class

Effect Explanatory Model Estimated Approximate WaldPL

variable parameter value standard error

same sameChoice L f y2.17 1.15 3.53
differ differL f y4.30 1.17 13.50

gg ggMutual M r 3.15 0.69 20.90
bb bbM r 3.05 0.49 38.54
differ differM r 3.95 0.72 30.43

Expansiveness X a 1.29 1.22 1.121q 1
. . . . .
. . . . .
. . . . .
X a 0.28 1.16 0.0623,q 23

X a 0.00 0.00 –24,q 24

Attractiveness X b y0.94 0.89 1.11q1 1
. . . . .
. . . . .
. . . . .
X b y0.35 0.92 0.15q,23 23

X b 0.00 0.00 –q,24 24

These observations suggest that restricting r ggsr bbsr differ will have a statistically

negligible effect on the fit of the model, but that restricting f samesf differ will lead to a

large reduction in the goodness of fit. Confirmation of these conjectures is obtained from

the pseudo-Wald statistics 8, Wald , and pseudo-likelihood ratio statistics 9, G2 , forPL PL

these restrictions on the parameters, which are reported in Table 6.

Also reported in Table 6 are the pseudo-test statistics that assess the statistical

importance of expansiveness and attractiveness. Although each of the 23 parameters for

each effect could be examined, to assess whether the overall effect of expansiveness or

attractiveness is important, the entire set of 23 parameters for either effect should be

considered simultaneously. This goal is met by imposing the linear restriction a s PPP1

sa s0 for expansiveness and the linear restriction b s PPP sb s0 for popular-23 1 23

ity. In the absence of higher-order terms, the statistics in Table 6 provide evidence of the

necessity of both expansiveness and attractiveness.

The estimated parameters of the model with a single mutuality parameter are reported

in Table 7. While not reported here, we looked at even more restrictive models. The

Wald and G2 statistics for these more restrictive models indicate that no furtherPL PL

simplifications should be made. At this point, another possibility is either to add
Ž .higher-order terms e.g., transitivity or 2-stars or replace individual level terms with

higher-order ones. We fit such models later in Section 7. Before interpreting the

estimated model, we need to assess how well this model actually represents the

friendship network of the fourth-graders.

8
Wald statistics for linear restrictions on parameters were obtained from the ‘TEST’ option available in

SAS LOGISTIC.
9 2 Ž .The G statistics reported here equal the difference between y2 log likelihood for the restricted modelPL

and the more general model.
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2-in-stars s S sÝ X XI I i , j ,k ji k i

2-out-stars s S sÝ X XO O i , j ,k i j i k

2-mixed-stars s S sÝ X XM M i , j ,k ji i k

r s r sSubgroup effects f B sÝ X di , j i j i j;r s

IndiÕidual leÕel

Ž .Differential expansiveness a X soutdegree degree centralityi iq
Ž .Differential attractiveness b X s indegree degree prestigei q i

The indicator quantity d s1 if i is in the r th subgroup and j is in the sth, and 0 otherwise.i j;r s

Table 4 lists some basic p
U

effects, parameters and their associated explanatory

variables that are commonly used to model social networks. These statistics are

explained at length in the analyses of the examples presented later in this paper. The

primary effects that we have found useful so far are those corresponding to various
Ž . Ždyadic configurations that is, choice and mutuality and triadic configurations that is,

3 Žtransitivity and the 2-stars, as well as ‘subgroup’ effects in which actors are
.partitioned into a fixed set of subgroups, such as age groups .

The function k causes difficulties when fitting p
U

to data. It is a complicated

function of all the parameters, and is hard to differentiate analytically; consequently,
Žmaximum likelihood estimation is difficult, except for very small networks see Walker,

.1995 . An even greater problem with this function is that to work with it computation-

ally, it must be calculated for each possible network with g actors—a very large
Ž g Ž gy1. .number 2 to be exact . Because of these difficulties, we work with another

Ž .version of model 2 , which does not depend on the normalizing constant, and hence, is
Ž .easier to fit albeit approximately .

4.2. Logit models

Ž .The alternative version of model 2 that does not depend on k is a logit model. In a

logit or logistic regression model, the response variable is dichotomous and is coded as a

3
Since the sums in the definitions of the 2-stars in Table 4 are over i, j and k, the effects are counted

twice. As shown in Section 4.3, the explanatory variables in the models are differences between the effect

statistics when a tie is present and when a tie is absent. The relative differences are not affected by the double

counting.

Frank, Strauss, 1986
"Markov Graphs"
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specifying whether child 1 has a tie to child 3, while the sociomatrix Xy has an entry of15

0 in the cell specifying whether child 1 has a tie to child 5. Lastly, we define X c as thei j
c ! Ž . Ž .4complement relation for the tie from i to j: X s X , with k, l / i, j . Thei j k l

complement relation has no relational tie coded from i to j—one can view this single

variable as missing. Complement sociomatrices give all the relational information except

for the value of i’s tie to j.

4. An introduction to pU

4.1. p
U

The family of models p
U

contains the Markov random graphs of Frank and Strauss
Ž .1986 as a special case, as well as the dyadic interaction model p of Holland and1

Ž . Ž .Leinhardt 1977 Holland and Leinhardt, 1981; Fienberg and Wasserman, 1981 . We

begin with a collection of explanatory variables, all functions of the observed data x,
Ž . Ž . Ž .that we denote by z x , z x , PPP , z x .1 2 r

ŽAny graph-theoretic characteristic of the relation for example, the number of
.relational ties or the number of reciprocated ties , or attribute measurement on the actors

Ž . Ž .for example, gender or age is a potential explanatory z x . The model parameters, thek

elements of the vector u , will be the coefficients of a linear function of these

explanatory variables as in standard linear models:

u z x qu z x q PPPqu z x .Ž . Ž . Ž .1 1 2 2 r r

Ž .The response variable is the probability of the observed x, Pr Xsx ; but since

probabilities must be between 0 and 1, one usually models not the probability, but a

logarithmic transformation of it. Thus, we postulate that

log Pr Xsx is proportional to u z x q PPPqu z x . 1Ž . Ž . Ž . Ž .1 1 r r

Ž .Now all that we must do is normalize the right side of 1 to turn this into a proper
Ž .probability model so that the sum of Pr Xsx over all possible directed graphs is

unity.

From these concerns, comes the basic log linear model

exp u X z x exp u z x q PPPqu z x! 4 ! 4Ž . Ž . Ž .1 1 r r
Pr Xsx s s 2Ž . Ž .

k u k uŽ . Ž .
Ž .where u is a vector of the r model parameters, z x is the vector of the r explanatory

variables, and k is our normalizing constant that ensures that the probabilities sum to
Ž .unity. Following the terminology of Wasserman and Pattison 1996 , we refer to models

Ž . U
of the form 2 as p .

Ž .In Model 2 , the u parameters are the unknown ‘regression’ coefficients and must
Ž .be estimated. If we ignore the function k in the denominator of Model 2 , and take

Ž .logarithms of the left side as in 1 , we can see that the explanatory variables enter in a

standard, additive manner. We note that one might need constraints on the elements of u
to ensure a set of uniquely-determined parameters, as is often the case in general and

generalized linear models.
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Table 4 lists some basic p
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effects, parameters and their associated explanatory

variables that are commonly used to model social networks. These statistics are

explained at length in the analyses of the examples presented later in this paper. The

primary effects that we have found useful so far are those corresponding to various
Ž . Ždyadic configurations that is, choice and mutuality and triadic configurations that is,

3 Žtransitivity and the 2-stars, as well as ‘subgroup’ effects in which actors are
.partitioned into a fixed set of subgroups, such as age groups .

The function k causes difficulties when fitting p
U

to data. It is a complicated

function of all the parameters, and is hard to differentiate analytically; consequently,
Žmaximum likelihood estimation is difficult, except for very small networks see Walker,

.1995 . An even greater problem with this function is that to work with it computation-

ally, it must be calculated for each possible network with g actors—a very large
Ž g Ž gy1. .number 2 to be exact . Because of these difficulties, we work with another

Ž .version of model 2 , which does not depend on the normalizing constant, and hence, is
Ž .easier to fit albeit approximately .

4.2. Logit models

Ž .The alternative version of model 2 that does not depend on k is a logit model. In a

logit or logistic regression model, the response variable is dichotomous and is coded as a
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specifying whether child 1 has a tie to child 3, while the sociomatrix Xy has an entry of15

0 in the cell specifying whether child 1 has a tie to child 5. Lastly, we define X c as thei j
c ! Ž . Ž .4complement relation for the tie from i to j: X s X , with k, l / i, j . Thei j k l

complement relation has no relational tie coded from i to j—one can view this single

variable as missing. Complement sociomatrices give all the relational information except

for the value of i’s tie to j.

4. An introduction to pU

4.1. p
U

The family of models p
U

contains the Markov random graphs of Frank and Strauss
Ž .1986 as a special case, as well as the dyadic interaction model p of Holland and1

Ž . Ž .Leinhardt 1977 Holland and Leinhardt, 1981; Fienberg and Wasserman, 1981 . We

begin with a collection of explanatory variables, all functions of the observed data x,
Ž . Ž . Ž .that we denote by z x , z x , PPP , z x .1 2 r

ŽAny graph-theoretic characteristic of the relation for example, the number of
.relational ties or the number of reciprocated ties , or attribute measurement on the actors

Ž . Ž .for example, gender or age is a potential explanatory z x . The model parameters, thek

elements of the vector u , will be the coefficients of a linear function of these

explanatory variables as in standard linear models:

u z x qu z x q PPPqu z x .Ž . Ž . Ž .1 1 2 2 r r

Ž .The response variable is the probability of the observed x, Pr Xsx ; but since

probabilities must be between 0 and 1, one usually models not the probability, but a

logarithmic transformation of it. Thus, we postulate that

log Pr Xsx is proportional to u z x q PPPqu z x . 1Ž . Ž . Ž . Ž .1 1 r r

Ž .Now all that we must do is normalize the right side of 1 to turn this into a proper
Ž .probability model so that the sum of Pr Xsx over all possible directed graphs is

unity.

From these concerns, comes the basic log linear model

exp u X z x exp u z x q PPPqu z x! 4 ! 4Ž . Ž . Ž .1 1 r r
Pr Xsx s s 2Ž . Ž .

k u k uŽ . Ž .
Ž .where u is a vector of the r model parameters, z x is the vector of the r explanatory

variables, and k is our normalizing constant that ensures that the probabilities sum to
Ž .unity. Following the terminology of Wasserman and Pattison 1996 , we refer to models

Ž . U
of the form 2 as p .

Ž .In Model 2 , the u parameters are the unknown ‘regression’ coefficients and must
Ž .be estimated. If we ignore the function k in the denominator of Model 2 , and take

Ž .logarithms of the left side as in 1 , we can see that the explanatory variables enter in a

standard, additive manner. We note that one might need constraints on the elements of u
to ensure a set of uniquely-determined parameters, as is often the case in general and

generalized linear models.
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Table 4

Some parameters and graph statistics for p
U

models

Ž .Type Parameter Graph statistic z x
Label

Dyadic

Choice f LsÝ X s Xi j i j qq
Mutuality r MsÝ X Xi- j i j ji

Triadic

Transitivity t T sÝ X X XT T i , j ,k i j jk i k

Ž .Intransitivity t T sÝ X X 1y XI I i , j ,k i j jk i k

Cyclicity t T sÝ X X XC C i , j ,k i j jk k i

2-in-stars s S sÝ X XI I i , j ,k ji k i

2-out-stars s S sÝ X XO O i , j ,k i j i k

2-mixed-stars s S sÝ X XM M i , j ,k ji i k

r s r sSubgroup effects f B sÝ X di , j i j i j;r s

IndiÕidual leÕel

Ž .Differential expansiveness a X soutdegree degree centralityi iq
Ž .Differential attractiveness b X s indegree degree prestigei q i

The indicator quantity d s1 if i is in the r th subgroup and j is in the sth, and 0 otherwise.i j;r s

Table 4 lists some basic p
U

effects, parameters and their associated explanatory

variables that are commonly used to model social networks. These statistics are

explained at length in the analyses of the examples presented later in this paper. The

primary effects that we have found useful so far are those corresponding to various
Ž . Ždyadic configurations that is, choice and mutuality and triadic configurations that is,

3 Žtransitivity and the 2-stars, as well as ‘subgroup’ effects in which actors are
.partitioned into a fixed set of subgroups, such as age groups .

The function k causes difficulties when fitting p
U

to data. It is a complicated

function of all the parameters, and is hard to differentiate analytically; consequently,
Žmaximum likelihood estimation is difficult, except for very small networks see Walker,

.1995 . An even greater problem with this function is that to work with it computation-

ally, it must be calculated for each possible network with g actors—a very large
Ž g Ž gy1. .number 2 to be exact . Because of these difficulties, we work with another

Ž .version of model 2 , which does not depend on the normalizing constant, and hence, is
Ž .easier to fit albeit approximately .

4.2. Logit models

Ž .The alternative version of model 2 that does not depend on k is a logit model. In a

logit or logistic regression model, the response variable is dichotomous and is coded as a

3
Since the sums in the definitions of the 2-stars in Table 4 are over i, j and k, the effects are counted

twice. As shown in Section 4.3, the explanatory variables in the models are differences between the effect

statistics when a tie is present and when a tie is absent. The relative differences are not affected by the double

counting.
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specifying whether child 1 has a tie to child 3, while the sociomatrix Xy has an entry of15

0 in the cell specifying whether child 1 has a tie to child 5. Lastly, we define X c as thei j
c ! Ž . Ž .4complement relation for the tie from i to j: X s X , with k, l / i, j . Thei j k l

complement relation has no relational tie coded from i to j—one can view this single

variable as missing. Complement sociomatrices give all the relational information except

for the value of i’s tie to j.

4. An introduction to pU

4.1. p
U

The family of models p
U

contains the Markov random graphs of Frank and Strauss
Ž .1986 as a special case, as well as the dyadic interaction model p of Holland and1

Ž . Ž .Leinhardt 1977 Holland and Leinhardt, 1981; Fienberg and Wasserman, 1981 . We

begin with a collection of explanatory variables, all functions of the observed data x,
Ž . Ž . Ž .that we denote by z x , z x , PPP , z x .1 2 r

ŽAny graph-theoretic characteristic of the relation for example, the number of
.relational ties or the number of reciprocated ties , or attribute measurement on the actors

Ž . Ž .for example, gender or age is a potential explanatory z x . The model parameters, thek

elements of the vector u , will be the coefficients of a linear function of these

explanatory variables as in standard linear models:

u z x qu z x q PPPqu z x .Ž . Ž . Ž .1 1 2 2 r r

Ž .The response variable is the probability of the observed x, Pr Xsx ; but since

probabilities must be between 0 and 1, one usually models not the probability, but a

logarithmic transformation of it. Thus, we postulate that

log Pr Xsx is proportional to u z x q PPPqu z x . 1Ž . Ž . Ž . Ž .1 1 r r

Ž .Now all that we must do is normalize the right side of 1 to turn this into a proper
Ž .probability model so that the sum of Pr Xsx over all possible directed graphs is

unity.

From these concerns, comes the basic log linear model

exp u X z x exp u z x q PPPqu z x! 4 ! 4Ž . Ž . Ž .1 1 r r
Pr Xsx s s 2Ž . Ž .

k u k uŽ . Ž .
Ž .where u is a vector of the r model parameters, z x is the vector of the r explanatory

variables, and k is our normalizing constant that ensures that the probabilities sum to
Ž .unity. Following the terminology of Wasserman and Pattison 1996 , we refer to models

Ž . U
of the form 2 as p .

Ž .In Model 2 , the u parameters are the unknown ‘regression’ coefficients and must
Ž .be estimated. If we ignore the function k in the denominator of Model 2 , and take

Ž .logarithms of the left side as in 1 , we can see that the explanatory variables enter in a

standard, additive manner. We note that one might need constraints on the elements of u
to ensure a set of uniquely-determined parameters, as is often the case in general and

generalized linear models.
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Table 4

Some parameters and graph statistics for p
U

models

Ž .Type Parameter Graph statistic z x
Label

Dyadic

Choice f LsÝ X s Xi j i j qq
Mutuality r MsÝ X Xi- j i j ji

Triadic

Transitivity t T sÝ X X XT T i , j ,k i j jk i k

Ž .Intransitivity t T sÝ X X 1y XI I i , j ,k i j jk i k

Cyclicity t T sÝ X X XC C i , j ,k i j jk k i

2-in-stars s S sÝ X XI I i , j ,k ji k i

2-out-stars s S sÝ X XO O i , j ,k i j i k

2-mixed-stars s S sÝ X XM M i , j ,k ji i k

r s r sSubgroup effects f B sÝ X di , j i j i j;r s

IndiÕidual leÕel

Ž .Differential expansiveness a X soutdegree degree centralityi iq
Ž .Differential attractiveness b X s indegree degree prestigei q i

The indicator quantity d s1 if i is in the r th subgroup and j is in the sth, and 0 otherwise.i j;r s

Table 4 lists some basic p
U

effects, parameters and their associated explanatory

variables that are commonly used to model social networks. These statistics are

explained at length in the analyses of the examples presented later in this paper. The

primary effects that we have found useful so far are those corresponding to various
Ž . Ždyadic configurations that is, choice and mutuality and triadic configurations that is,

3 Žtransitivity and the 2-stars, as well as ‘subgroup’ effects in which actors are
.partitioned into a fixed set of subgroups, such as age groups .

The function k causes difficulties when fitting p
U

to data. It is a complicated

function of all the parameters, and is hard to differentiate analytically; consequently,
Žmaximum likelihood estimation is difficult, except for very small networks see Walker,

.1995 . An even greater problem with this function is that to work with it computation-

ally, it must be calculated for each possible network with g actors—a very large
Ž g Ž gy1. .number 2 to be exact . Because of these difficulties, we work with another

Ž .version of model 2 , which does not depend on the normalizing constant, and hence, is
Ž .easier to fit albeit approximately .

4.2. Logit models

Ž .The alternative version of model 2 that does not depend on k is a logit model. In a

logit or logistic regression model, the response variable is dichotomous and is coded as a

3
Since the sums in the definitions of the 2-stars in Table 4 are over i, j and k, the effects are counted

twice. As shown in Section 4.3, the explanatory variables in the models are differences between the effect

statistics when a tie is present and when a tie is absent. The relative differences are not affected by the double

counting.
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specifying whether child 1 has a tie to child 3, while the sociomatrix Xy has an entry of15

0 in the cell specifying whether child 1 has a tie to child 5. Lastly, we define X c as thei j
c ! Ž . Ž .4complement relation for the tie from i to j: X s X , with k, l / i, j . Thei j k l

complement relation has no relational tie coded from i to j—one can view this single

variable as missing. Complement sociomatrices give all the relational information except

for the value of i’s tie to j.

4. An introduction to pU

4.1. p
U

The family of models p
U

contains the Markov random graphs of Frank and Strauss
Ž .1986 as a special case, as well as the dyadic interaction model p of Holland and1

Ž . Ž .Leinhardt 1977 Holland and Leinhardt, 1981; Fienberg and Wasserman, 1981 . We

begin with a collection of explanatory variables, all functions of the observed data x,
Ž . Ž . Ž .that we denote by z x , z x , PPP , z x .1 2 r

ŽAny graph-theoretic characteristic of the relation for example, the number of
.relational ties or the number of reciprocated ties , or attribute measurement on the actors

Ž . Ž .for example, gender or age is a potential explanatory z x . The model parameters, thek

elements of the vector u , will be the coefficients of a linear function of these

explanatory variables as in standard linear models:

u z x qu z x q PPPqu z x .Ž . Ž . Ž .1 1 2 2 r r

Ž .The response variable is the probability of the observed x, Pr Xsx ; but since

probabilities must be between 0 and 1, one usually models not the probability, but a

logarithmic transformation of it. Thus, we postulate that

log Pr Xsx is proportional to u z x q PPPqu z x . 1Ž . Ž . Ž . Ž .1 1 r r

Ž .Now all that we must do is normalize the right side of 1 to turn this into a proper
Ž .probability model so that the sum of Pr Xsx over all possible directed graphs is

unity.

From these concerns, comes the basic log linear model

exp u X z x exp u z x q PPPqu z x! 4 ! 4Ž . Ž . Ž .1 1 r r
Pr Xsx s s 2Ž . Ž .

k u k uŽ . Ž .
Ž .where u is a vector of the r model parameters, z x is the vector of the r explanatory

variables, and k is our normalizing constant that ensures that the probabilities sum to
Ž .unity. Following the terminology of Wasserman and Pattison 1996 , we refer to models

Ž . U
of the form 2 as p .

Ž .In Model 2 , the u parameters are the unknown ‘regression’ coefficients and must
Ž .be estimated. If we ignore the function k in the denominator of Model 2 , and take

Ž .logarithms of the left side as in 1 , we can see that the explanatory variables enter in a

standard, additive manner. We note that one might need constraints on the elements of u
to ensure a set of uniquely-determined parameters, as is often the case in general and

generalized linear models.
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Table 11

Ž .Estimated parameters of multiple class model Model 4 in Table 9

Variable Parameter Estimated Standard Odds

value error ratio

Choice f 0.54 0.68 1.713rd

f 2.56 0.58 12.964th

f 1.44 0.74 4.225th

Mutuality r s r s r 1.81 0.20 6.123rd 4th 5th

r 2.74 1.10 15.555th,gg

Degree Centralization a 4.37 1.78 79.395th

Acceptance g sg 1.32 0.17 3.733rd 5th

Ratings g 0.62 0.17 1.874th

Transitivity t st st st 0.28 0.02 1.33T ,3rd,gg T ,3rd,bb T ,3rd,gb T ,4th

t 0.55 0.06 1.73T ,5th

In-2-Stars s ss y0.27 0.05 0.76I,3rd I,4th

s y0.53 0.11 0.59I,5th

Out-2-Stars s 0.09 0.04 1.10O ,3rd

s ss ss y0.27 0.10 0.76O ,5th,bb O ,5th,gb O ,5th,bg

s 0.38 0.24 1.47O ,5th,gg

Mixed-2-Stars s y0.20 0.03 0.82M ,3rd

s ss ss ss y0.35 0.04 0.70M ,4th M ,5th,bb M ,5th,gb M ,5th,bg

s y0.99 0.21 0.37M ,5th,gg

friendships increase the odds of friendship ties. For the most part, the increases in

2-in-stars, 2-out-stars, and 2-mixed-stars tend to increase the probabilities that friendship

ties are absent, except for girl–girl friendships in the fifth-grade.

8. Conclusions and extensions

The p
U

model for a single social network and the multiple network extension

introduced here overcome the severely limiting assumption of independence on dyads

made by earlier statistical models for such data. Since p
U

and the multi-network

generalization are simply logistic regressions, they are easily fit to data using standard

statistical computing packages.

The novel feature of the multiple network p
U

model is that it allows researchers to

find communalities and similarities among networks under study, while also allowing
Žfor uniquenesses and idiosyncrasies within networks borrowing from the language of

.factor analysis . Individual networks have their own ‘personalities’, which can easily be
.found by studying the differences among the networks , but they also share common

Ž .structural aspects. Communalities between networks suggest imply that underlying

processes generating relational ties are similar. Thus, multi-network p
U

provides a

statistical tool to study these possible underlying processes.

The flexibility of the p
U

modeling approach was demonstrated by its extensions to
Žmultiple relations and valued relations Pattison and Wasserman, 1998; Robins et al.,
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In the case of dynamic networks,  
we assume an objective function which agents try to optimize:  

which depends on each agent i 
and a set of agent-centered 
parameterized observables si,p(X) 

assuming the process is a Markov Chain:  
at each step, an actor may (myopically) change an outgoing link, optimizing 
her objective function (plus an i.i.d. “random utility” component) 

estimate the parameter vector θ that explains best relation changes
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 http://www.stats.ox.ac.uk/~snijders/siena  )

here), just short of significance at the 5 percent level. The results obtained

when deleting the two nonsignificant effects from the model are shown as

Model 2 in Table 1. The indirect relations effect becomes larger, and the

density and reciprocity effects change, because these effects now must

also represent the effects represented by transitivity and balance in Model

1. It can be concluded that there is evidence of a tendency to have closed

networks in the sense of a relatively low number of indirect relations;

controlling for this effect and for reciprocity, there is no significant ten-

dency toward a high number of transitive triplets or toward balanced rela-

tionships. No significant evidence was found for other structural network

effects (estimation results not shown here).

As a next step, the three basic effects of gender were included in

the model. In the original data set, gender was represented by a dummy

variable equal to 0 for women and 1 for men. The means were subtracted

from this variable as well as from the dissimilarity variable 6vi ! vj 6. Given

that the proportion of women was 75 percent, this leads to the variable vi
being !0.25 for women and "0.75 for men, and the dissimilarity vari-

able being !0.387 for equal-gender pairs and 0.613 for unequal-gender

pairs. The results for the model including the structural effects of reciproc-

ity and indirect relations as well as the three covariate effects of gender

are presented in Table 1 as Model 3. It can be concluded that women are

more active in creating positive relations than men ~t # !0+6000+28 #
!2+14!, while men receive more positive choices ~t # 0+6400+24 # 2+67!,

TABLE 1

Parameters and Standard Errors for Models Estimated Using Observations at t1, t2 , t3

Model 1 Model 2 Model 3

Effect Par. (s.e.) Par. (s.e.) Par. (s.e.)

Rate (period 1) 3.87 3.78 3.91

Rate (period 2) 3.10 3.14 3.07

Density !1.48 (0.30) !1.05 (0.19) !1.13 (0.22)

Reciprocity 1.98 (0.31) 2.44 (0.40) 2.52 (0.37)

Transitivity 0.21 (0.11) — —

Balance !0.33 (0.66) — —

Indirect relations !0.347 (0.074) !0.557 (0.083) !0.502 (0.084)

Gender activity — — !0.60 (0.28)

Gender popularity — — 0.64 (0.24)

Gender dissimilarity — — !0.42 (0.24)
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PRESCRIBED STRUCTURAL FEATURES
12 Random graphs as models of networks

section, for instance, which is the distribution of vertex degrees in a graph. The
corresponding generating function is

G0(x) =
∞∑

k=0

pkx
k. (12)

It is clear that this function captures all of the information present in the original
distribution pk, since we can recover pk from G0(x) by simple differentiation:

pk =
1
k!

dkG0

dxk

∣∣∣∣
x=0

. (13)

We say that the function G0 “generates” the probability distribution pk.
We can also define a generating function for the distribution qk, Eq. (4), of other

edges leaving the vertex we reach by following an edge in the graph:

G1(x) =
∞∑

k=0

qkx
k =

∑∞
k=0(k + 1)pk+1xk

∑
j jpj

=
∑∞

k=0 kpkxk−1

∑
j jpj

=
G′

0(x)
z

, (14)

where G′
0(x) denotes the first derivative of G0(x) with respect to its argument. This

generating function will be useful to us in following developments.

3.1 Properties of generating functions

Generating functions have some properties that will be of use in this paper. First, if
the distribution they generate is properly normalized then

G0(1) =
∑

k

pk = 1. (15)

Second, the mean of the distribution can be calculated directly by differentiation:

G′
0(1) =

∑

k

kpk = ⟨k⟩. (16)

Indeed we can calculate any moment of the distribution by taking a suitable derivative.
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d
dx
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Third, and most important, if a generating function generates the probability
distribution of some property k of an object, such as the degree of a vertex, then the
sum of that property over n independent such objects is distributed according to the
nth power of the generating function. Thus the sum of the degrees of n randomly
chosen vertices on our graph has a distribution which is generated by the function
[G0(x)]n. To see this, note that the coefficient of xm in [G0(x)]n has one term of
the form pk1pk2 . . . pkn for every set {ki} of the degrees of the n vertices such that∑

i ki = m. But these terms are precisely the probabilities that the degrees sum to m
in every possible way, and hence [G0(x)]n is the correct generating function. This
property is the reason why generating functions are useful in the study of random
graphs. Most of the results of this paper rely on it.
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where we have made use of the fact, Eq. (15), that properly normalized generating
functions are equal to 1 at x = 1, so that G0(1) = H1(1) = 1. The value of H ′

1(1) we
can calculate from Eq. (25) by differentiating and rearranging to give

H ′
1(1) =

1
1 − G′

1(1)
, (33)

and substituting into (32) we find

⟨s⟩ = 1 +
G′

0(1)
1 − G′

1(1)
. (34)

This expression can also be written in a number of other forms. For example, we note
that

G′
0(1) =

∑

k

kpk = ⟨k⟩ = z1, (35)

G′
1(1) =

∑
k k(k − 1)pk∑

k kpk
=

⟨k2⟩ − ⟨k⟩
⟨k⟩ =

z2

z1
, (36)

where we have made use of Eq. (6). Substituting into (34) then gives the average
component size below the transition as

⟨s⟩ = 1 +
z2
1

z1 − z2
. (37)

This expression has a divergence at z1 = z2, which signifies the formation of the
giant component and gives an alternative and more rigorous derivation of the position
of the critical point to that given in Section 2. Using Eq. (34), we could also write
the condition for the phase transition as G′

1(1) = 1.

4.3 Above the phase transition

The calculations of the previous sections concerned the behaviour of the graph below
the phase transition where there is no giant component in the graph. Almost all graphs
studied empirically seem to be in the regime above the transition and do have a giant
component. (This may be a tautologous statement, since it probably rarely occurs to
researchers to consider a network representation of a set of objects or people so loosely
linked that there is no connection between most pairs.) Can our generating function
techniques be extended to this regime? As we now show, they can, although we will
have to use some tricks to make things work. The problem is that the giant component
is not a component like those we have considered so far. Those components had a
finite average size, which meant that in the limit of large graph size they were all tree-
like, containing no closed loops, as discussed in Section 4.1. The giant component, on
the other hand, scales, by definition, as the size of the graph as a whole, and therefore
becomes infinite as n → ∞. This means that there will in general be loops in the giant
component, which makes all the arguments of the previous sections break down. This
problem can be fixed however by the following simple ploy. Above the transition,
we define H0(x) and H1(x) to be the generating functions for the distributions of
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Finally, a randomly selected vertex with s stubs and
t triangles is not in the giant component if none of
its neighbors are in the giant component, which hap-
pens with probability us

1u
t
2 where s and t are distributed

according to p(s, t). Averaging over p(s, t), we find
the probability of not being in the giant component to
be G0(u1, u2), and the probability S of being in the giant
component is one minus this:

S = 1−G0(u1, u2). (9)

Between them Eqs. (7) to (9) give the size of the giant
component in our edge–triangle network as a fraction of
the size of the whole network. While they cannot always
be solved analytically, they can be solved numerically by
simple iteration: one makes an initial guess about the val-
ues of u1 and u2 and iterates (7) and (8) to convergence,
then substitutes the resulting values into (9). (The size
of the giant component is only one example of a quantity
that can be calculated within the edge–triangle model.
For other examples, including clustering coefficient and
percolation properties see Ref. [16].)
The calculation of the giant component size in fact

follows quite closely the method used for other, locally
tree-like random graph models such as the configuration
model [7] and does not appear significantly more complex
despite the addition of triangles, which destroy the tree-
like property. The reason for this is that, while the edge–
triangle model is indeed not tree-like in a naive sense,
it is still tree-like at a higher level, above the level of
the triangles. Specifically, in the limit of large graph
size, a finite-sized local neighborhood of a vertex in the
edge–triangle model is a connected graph whose largest
biconnected component (of which there can be many) is
a triangle. This means that if we regard each triangle in
the network as a single three-vertex unit (and each single
edge as a two-vertex unit) then local neighborhoods are
tree-like at the level of these units. We will develop this
idea further shortly.

III. A GENERAL MODEL

The edge–triangle model provides a simple, solvable
model of networks that contain triangles. It does, how-
ever, have some disadvantages. In particular, the proba-
bility that any two triangles connected to the same ver-
tex will share an edge vanishes in the limit of large graph
size, a direct consequence of the fact that the networks
generated by the model are tree-like above the level of
triangles. In real networks, by contrast, it is a common
occurrence that triangles share an edge, and hence the
model is unrealistic in this respect.
One way to solve this problem would be to modify the

model in some way to encourage triangles to share edges,
but this is unsatisfactory because, in so doing, we would
destroy the locally tree-like property of the network (at
the triangle level) that allows its solution. Instead, there-
fore, we propose an alternative approach: we consider

FIG. 1: A small network made of single edges, triangles, and
“diamond” subgraphs composed of two overlapping triangles.

two triangles that share an edge to form a new network
element, analogous to the triangle, but now with four
vertices instead of three—see Fig. 1. Our approach is to
create a model that introduces a specified distribution
of these larger elements in exactly the same way that we
previously introduced triangles. More generally, it is pos-
sible to define a model in which we introduce arbitrary
distributions of any subgraphs we please. (The possibil-
ity of such a model was mentioned briefly in Refs. [16]
and [19].) As we will show, such models can always be
viewed as tree-like at a suitable higher level and thereby
solved exactly for properties both local and global in the
limit of large size.

A. Subgraphs and roles

In the model we propose, we first specify a set of sub-
graphs that will be added to the network. Three exam-
ples of possible sets are shown in Fig. 2. The network
will be created by specifying the number of each of the
subgraphs attached to each vertex and then sampling
randomly from the (usually large) set of compatible net-
works. The edge–triangle model of Section II is an ex-
ample of such a model in which the set of subgraphs
numbers just two—the single edge and the triangle as
shown in Fig. 2b. The model of this section generalizes
the edge–triangle model to arbitrary subgraph sets of ar-
bitrary size.
This generalization, however, introduces an important

new feature to the model that was not present in the
edge–triangle model. It is not sufficient, in the general
case, merely to specify how many copies of each subgraph
are connected to each vertex because the vertices in the
subgraphs can play more than one role. Consider the
diamond-shaped subgraph of Fig. 2b. Two of the ver-
tices in this subgraph have three incident edges while the
others have two. Specifying only that a vertex belongs
to such a subgraph is therefore ambiguous. We need to
specify also which role the vertex plays (a point made
previously by Miller [19]). A vertex could, for example,
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and Eqs. (22) and (24) reduce to the two equations

u1 = G1(u1, u2), u2 =
[

G2(u1, u2)
]2
, (28)

which are identical to Eqs. (7) and (8). And the size of
the giant component as a fraction of the size of the whole
network is given by S = 1−G0(u1, u2) as before.
As a more complicated example consider a network

built from the subgraphs shown in Fig. 2b: single edges,
triangles, and diamonds. Of the four roles let us label the
ends of single edges role 1, the corners of the triangles
role 2, and the two roles in the diamond roles 3 and 4
(which is which will not matter). Now consider the role
distribution p(d) = p1(d1)p2(d2)p34(d3, d4) where

p1(d1) = e−c1
cd1

1

d1!
, p2(d2) = e−c2

cd2

2

d2!
, (29)

p34(d3, d4) = (1− 2a)δr3,0δr4,0
+ a[δr3,0δr4,1 + δr3,1δr4,0]. (30)

In other words, participation is Poisson distributed with
means c1 and c2 for roles 1 and 2, and vertices participate
either in one diamond with equal probability a of taking
role 3 or 4, or in no diamonds with probability 1− 2a.

This particular distribution is chosen because it has a
nontrivial but still relatively simple solution: after some
work it can be shown that the size S of the giant com-
ponent obeys

S = 1− (1− 2a)e−c1S−c2S(2−S) − 2ae−4c1S−4c2S(2−S).
(31)

We show the form of this solution as a function for a for
one particular choice of parameters in Fig. 5.

C. Position of the phase transition

As with other random graph models, the fixed point
equation, Eq. (22), has a trivial solution at ur = 1 for
all r corresponding to the state in which there is no giant
component in the network and this fixed point undergoes
a transcritical bifurcation at the point at which a giant
component appears. We can locate the bifurcation, and
hence the appearance of the giant component, by linear
stability analysis of the fixed point. We write ur = 1− ϵr
and expand to first order in the small quantities ϵr, which
gives ϵ = Mϵ where M is the c× c matrix with elements

Mrs =
∑

t

(

ntδgrgt − δrt
)∂Gt

∂zs

∣

∣

∣

∣

z=1

. (32)

Using the definition of Gr(z) given in Eq. (17) we can
show that

∂Gt

∂zs

∣

∣

∣

∣

z=1

=
⟨dsdt⟩
⟨dt⟩

− δst, (33)

and hence that

Mrs = δrs −
⟨drds⟩
⟨dr⟩

− nsδgrgs +
∑

t

⟨dsdt⟩
⟨dt⟩

ntδgrgt . (34)

FIG. 5: The size S of the giant component in the network of
edges, triangles, and diamonds described in the text, with the
average role indices for edges and triangles fixed at ⟨d1⟩ = 1

4

and ⟨d2⟩ = 1

8
, plotted as a function of the parameter a that

controls the two role indices for the diamonds (see Eq. (30)).
The solid line represents the analytic result and the circles
are simulation results averaged over 100 networks with 105

vertices each.

Physically the matrix element Mrs measures a branch-
ing ratio for the locally tree-like bipartite graph: a ver-
tex that plays role r shares the relevant subgraph with
some number of other vertices and Mrs measures the av-
erage number of times those other vertices collectively
play role s in further subgraphs.
Now consider a set of randomly chosen vertices in a

large network and suppose we grow that set repeatedly
by adding to it all vertices with which its members share
a subgraph. If we focus on the boundary of the set—
meaning those vertices added on the most recent step—
and represent the number of times the boundary vertices
play roles 1 to c by a c-component vector, then the ex-
pected value of the vector is multiplied on each step by
one factor of M. If the sum of the vector elements grows
we have a giant component and if it dwindles to zero,
so that the set stops growing, then we do not, meaning
that we have a giant component if and only if at least
one eigenvalue of M is greater than one. If all eigenval-
ues are less than one then there is no giant component,
and if one or more eigenvalues are exactly equal to one
and none are greater then we are precisely at the phase
transition point at which the giant component appears.

In general the eigenvalues of M are not trivial to
find, but in some cases the problem simplifies. Con-
sider, for instance, the case in which the role indices dr
are independent and Poisson distributed, in which case
⟨drds⟩ = ⟨dr⟩⟨ds⟩+ ⟨dr⟩δrs so that

Mrs = (Nr − 1)⟨ds⟩, (35)

where Nr =
∑

t ntδgrgt is the number of vertices in the

mean component size
generating function

2

other properties are all crucially dependent on the tree-
like property. This is unfortunate, since the tree-like
nature of the network is destroyed by the introduction
of a finite density of any subgraph that contains one or
more loops, which suggests that generalizations of ran-
dom graph models containing such subgraphs may be in-
trinsically unsolvable. As we show in this paper, however,
this turns out not to be the case. By exploiting tree-like
structure at a higher level, the level of the so-called “fac-
tor graph,” we can introduce arbitrary distributions of
subgraphs into the network, including those containing
loops, and still solve exactly for global properties of the
network, even though the network is now explicitly not
locally tree-like. As a first demonstration of the process,
consider the following simple model, which we will call
the “edge–triangle” model.
The edge–triangle model was proposed previously

in [16, 19] as a way to incorporate the phenomenon of
clustering or transitivity into random graphs. It gen-
eralizes the configuration model, the standard model
of a network with arbitrary degree distribution [6, 7].
In the configuration model one specifies the number of
edges attached to each vertex i—the so-called “degree
sequence”—as the fundamental parameters of the net-
work. In the edge–triangle model one specifies instead
the number ti of triangles that each vertex participates
in along with the number si of “single edges,” meaning
edges that are not part of a triangle. One can picture
vertex i as having si “stubs” of edges emerging from it
and ti corners of triangles. Then an edge–triangle net-
work is generated by choosing stubs randomly in pairs
and joining them to form complete edges until no stubs
remain, and also choosing triangle corners in threes and
joining them to form complete triangles until no corners
remain. The end result is a network drawn uniformly
at random from the set of all possible matchings of the
stubs and corners, and the edge–triangle model is defined
to be the ensemble of such matchings in which each ap-
pears with equal probability. Note that to create a com-
plete matching we require that the total number of stubs
be a multiple of two and the total number of corners a
multiple of three.
The undirected networks generated by the edge–

triangle model are clearly not locally tree-like, since they
contain triangles. Yet one can still proceed with analytic
calculations. Consider for instance the following calcu-
lation of the size of the giant component (the extensive
part of the network in which any vertex can reach any
other via at least one path).
Let us define the joint degree distribution p(s, t) for

our network to be the fraction of vertices connected to s
single edges and t triangles. As with other random graph
models, it’s helpful to define a generating function G0 for
this degree distribution:

G0(z1, z2) =
∑

st

p(s, t) zs1z
t
2. (2)

Also important is the so-called “excess degree distri-

bution.” Excess degree is a property of the vertex one
reaches by following an edge in a network and is normally
defined to be the number of edges connected to such a
vertex other than the edge one followed in the first place.
In the edge–triangle model, where the “degree” of each
vertex is denoted by the two numbers s and t, there are
now two corresponding excess degrees. If one follows a
single edge to reach a vertex then the excess degree is
given by the number t of triangles attached to that ver-
tex and the number s of single edges other than the edge
via which we arrived. Similarly if one follows a triangle
to reach a vertex then the excess degree is given by the
number of single edges attached to that vertex and the
number of triangles other than the one via which we ar-
rived. It is straightforward to show that the distributions
of these excess degrees are, respectively,

q(s, t) =
(s+ 1)

⟨s⟩
p(s+ 1, t), (3)

r(s, t) =
(t+ 1)

⟨t⟩
p(s, t+ 1), (4)

where ⟨s⟩ and ⟨t⟩ are the average numbers of stubs and
corners at a vertex in the network as a whole. The gen-
erating functions for the excess degree distributions are

G1(z1, z2) =
∑

st

q(s, t) zs1z
t
2, (5)

G2(z1, z2) =
∑

st

r(s, t) zs1z
t
2. (6)

The calculation of the giant component size now pro-
ceeds as follows. Let u1 be the probability that the vertex
reached by following a single edge (an edge that is not
part of a triangle) is not connected to the giant compo-
nent by any of its other edges or triangles, and let u2

be the probability that neither of the vertices reached
by following a triangle is connected to the giant compo-
nent by any of their other triangles or edges. If the ver-
tex reached by following an edge is connected to s other
edges and t triangles then the probability that none of
them leads to the giant component is us

1u
t
2, where s and

t are distributed according to the excess degree distri-
bution q(s, t). Averaging over this distribution, we find
that

u1 =
∑

st

q(s, t)us
1u

t
2 = G1(u1, u2). (7)

Similarly, if a vertex reached by following a triangle is
is connected to t other triangles and s edges then the
probability that none of them leads to the giant com-
ponent is again us

1u
t
2, but with s and t now distributed

according to r(s, t). Averaging over r(s, t) then gives an
average probability of G2(u1, u2) and the total probabil-
ity for both vertices reached via a triangle is the square
of this quantity:

u2 =
[

G2(u1, u2)
]2
. (8)
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section, for instance, which is the distribution of vertex degrees in a graph. The
corresponding generating function is

G0(x) =
∞∑

k=0

pkx
k. (12)

It is clear that this function captures all of the information present in the original
distribution pk, since we can recover pk from G0(x) by simple differentiation:

pk =
1
k!

dkG0

dxk

∣∣∣∣
x=0

. (13)

We say that the function G0 “generates” the probability distribution pk.
We can also define a generating function for the distribution qk, Eq. (4), of other

edges leaving the vertex we reach by following an edge in the graph:

G1(x) =
∞∑

k=0

qkx
k =

∑∞
k=0(k + 1)pk+1xk

∑
j jpj

=
∑∞

k=0 kpkxk−1

∑
j jpj

=
G′

0(x)
z

, (14)

where G′
0(x) denotes the first derivative of G0(x) with respect to its argument. This

generating function will be useful to us in following developments.

3.1 Properties of generating functions

Generating functions have some properties that will be of use in this paper. First, if
the distribution they generate is properly normalized then

G0(1) =
∑

k

pk = 1. (15)

Second, the mean of the distribution can be calculated directly by differentiation:

G′
0(1) =

∑

k

kpk = ⟨k⟩. (16)

Indeed we can calculate any moment of the distribution by taking a suitable derivative.
In general,

⟨kn⟩ =
∑

k

knpk =
[(

x
d
dx

)n

G0(x)
]

x=1

. (17)

Third, and most important, if a generating function generates the probability
distribution of some property k of an object, such as the degree of a vertex, then the
sum of that property over n independent such objects is distributed according to the
nth power of the generating function. Thus the sum of the degrees of n randomly
chosen vertices on our graph has a distribution which is generated by the function
[G0(x)]n. To see this, note that the coefficient of xm in [G0(x)]n has one term of
the form pk1pk2 . . . pkn for every set {ki} of the degrees of the n vertices such that∑

i ki = m. But these terms are precisely the probabilities that the degrees sum to m
in every possible way, and hence [G0(x)]n is the correct generating function. This
property is the reason why generating functions are useful in the study of random
graphs. Most of the results of this paper rely on it.
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Third, and most important, if a generating function generates the probability
distribution of some property k of an object, such as the degree of a vertex, then the
sum of that property over n independent such objects is distributed according to the
nth power of the generating function. Thus the sum of the degrees of n randomly
chosen vertices on our graph has a distribution which is generated by the function
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property is the reason why generating functions are useful in the study of random
graphs. Most of the results of this paper rely on it.
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where we have made use of the fact, Eq. (15), that properly normalized generating
functions are equal to 1 at x = 1, so that G0(1) = H1(1) = 1. The value of H ′

1(1) we
can calculate from Eq. (25) by differentiating and rearranging to give

H ′
1(1) =

1
1 − G′

1(1)
, (33)

and substituting into (32) we find

⟨s⟩ = 1 +
G′

0(1)
1 − G′

1(1)
. (34)

This expression can also be written in a number of other forms. For example, we note
that

G′
0(1) =

∑

k

kpk = ⟨k⟩ = z1, (35)

G′
1(1) =

∑
k k(k − 1)pk∑

k kpk
=

⟨k2⟩ − ⟨k⟩
⟨k⟩ =

z2

z1
, (36)

where we have made use of Eq. (6). Substituting into (34) then gives the average
component size below the transition as

⟨s⟩ = 1 +
z2
1

z1 − z2
. (37)

This expression has a divergence at z1 = z2, which signifies the formation of the
giant component and gives an alternative and more rigorous derivation of the position
of the critical point to that given in Section 2. Using Eq. (34), we could also write
the condition for the phase transition as G′

1(1) = 1.

4.3 Above the phase transition

The calculations of the previous sections concerned the behaviour of the graph below
the phase transition where there is no giant component in the graph. Almost all graphs
studied empirically seem to be in the regime above the transition and do have a giant
component. (This may be a tautologous statement, since it probably rarely occurs to
researchers to consider a network representation of a set of objects or people so loosely
linked that there is no connection between most pairs.) Can our generating function
techniques be extended to this regime? As we now show, they can, although we will
have to use some tricks to make things work. The problem is that the giant component
is not a component like those we have considered so far. Those components had a
finite average size, which meant that in the limit of large graph size they were all tree-
like, containing no closed loops, as discussed in Section 4.1. The giant component, on
the other hand, scales, by definition, as the size of the graph as a whole, and therefore
becomes infinite as n → ∞. This means that there will in general be loops in the giant
component, which makes all the arguments of the previous sections break down. This
problem can be fixed however by the following simple ploy. Above the transition,
we define H0(x) and H1(x) to be the generating functions for the distributions of

Random graphs with prescribed degree distributions 
a.k.a. “configuration model” 

using generating functions

(Newman, Strogatz, Watts, 2001)

mean component size
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Figure 2: The dK- and dK-random graph hierarchy.
The circles represent dK-graphs, whereas their centers rep-
resent dK-random graphs. The cross is the nK-graph iso-
morphic to a given graph G.

per-node statistics, such as the degree distribution. Third,
this list of metrics is incomplete. In particular, it cannot in-
clude any future metrics that may be of interest. Identifying
such a metric might result in finding that known synthetic
graphs do not match this new metric’s value: moving along
the loops in Figure 1 can thus continue forever.

To address these problems, we focus on establishing a fi-
nite set of mutually related properties that can form a basis
for any topological graph study. More precisely, for any
graph G, we wish to identify a series of graph properties
Pd, d = 0, 1, . . ., satisfying the following requirements:

1. constructibility: we can construct graphs having these
properties;

2. inclusion: any property Pd subsumes all properties Pi

with i = 0, . . . , d − 1: that is, a graph having prop-
erty Pd is guaranteed to also have all properties Pi

for i < d;

3. convergence: as d increases, the set of graphs having
property Pd “converges” to G: that is, there exists
a value of index d = D such that all graphs having
property PD are isomorphic to G.

In the rest of this section, we establish our construction of
the properties Pd, which we will call the dK-series. We be-
gin with the observation that the most basic properties of a
network topology characterize its connectivity. The coarsest
connectivity property is the average node degree k̄ = 2m/n,
where n = |V | and m = |E| are the numbers of nodes and
links in a given graph G(V, E). Therefore, the first prop-
erty P0 in our dK-series Pd is that the graph’s average de-
gree k̄ has the same value as in the given graph G. In Fig-
ure 2 we schematically depict the set of all graphs having
property P0 as 0K-graphs, defining the largest circle. Gen-
eralizing, we adopt the term dK-graphs to represent the set
of all graphs having property Pd.

The P0 property tells us the average number of links per
node, but it does not tell us the distribution of degrees
across nodes. In particular, we do not know the number of
nodes n(k) of each degree k in the graph. We define property
P1 to capture this information: P1 is therefore the property

that the graph’s node degree distribution P (k) = n(k)/n1

has the same form as in the given graph G. It is conve-
nient to call P (k) the 1K-distribution. P1 implies at least
as much information about the network as P0, but not vice
versa: given P (k), we find k̄ =

∑

kP (k). P1 provides more
information than P0, and it is therefore a more restrictive
metric: the set of 1K-graphs is a subset of the set of 0K-
graphs. Figure 2 illustrates this inclusive relationship by
drawing the set of 1K-graphs inside the set of 0K-graphs.

Continuing to d = 2, we note that the degree distri-
bution constrains the number of nodes of each degree in
the network, but it does not describe the interconnectiv-
ity of nodes with given degrees. That is, it does not pro-
vide any information on the total number m(k, k′) of links
between nodes of degree k and k′. We define the third
property P2 in our series as the property that the graph’s
joint degree distribution (JDD) has the same form as in
the given graph G. The JDD, or the 2K-distribution, is
P (k1, k2) = m(k1, k2)µ(k1, k2)/(2m), where µ(k1, k2) is 2 if
k1 = k2 and 1 otherwise. The JDD describes degree corre-
lations for pairs of connected nodes. Given P (k1, k2), we
can calculate P (k) = (k̄/k)

∑

k′ P (k, k′), but not vice versa.
Consequently, the set of 2K-graphs is a subset of the 1K-
graphs. Therefore, Figure 2 depicts the smaller 2K-graph
circle inside 1K.

We can continue to increase the amount of connectivity in-
formation by considering degree correlations among greater
numbers of connected nodes. To move beyond 2K, we must
begin to distinguish the various geometries that are possi-
ble in interconnecting d nodes. To introduce P3, we require
the following two components: 1) wedges: chains of 3 nodes
connected by 2 edges, called the P∧(k1, k2, k3) component;
and 2) triangles: cliques of 3 nodes, called the P△(k1, k2, k3)
component:

As the two geometries occur with different frequencies among
nodes having different degrees, we require a separate proba-
bility distribution for each configuration. We call these two
components taken together the 3K-distribution.

For P4, we need the above six distributions: where instead
of indices ∧,△ we use for d = 3, we have all non-isomorphic
graphs of size 4 numbered by 1, . . . , 6. We note that the

1Sacrificing a certain amount of rigor, we interchangeably
use the enumeration of nodes having some property in a
given graph, e.g., n(k)/n, with the probability that a node
has this property in a graph ensemble, e.g., P (k). The two
become identical when n → ∞; see [3] for further details.
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morphic to a given graph G.

per-node statistics, such as the degree distribution. Third,
this list of metrics is incomplete. In particular, it cannot in-
clude any future metrics that may be of interest. Identifying
such a metric might result in finding that known synthetic
graphs do not match this new metric’s value: moving along
the loops in Figure 1 can thus continue forever.

To address these problems, we focus on establishing a fi-
nite set of mutually related properties that can form a basis
for any topological graph study. More precisely, for any
graph G, we wish to identify a series of graph properties
Pd, d = 0, 1, . . ., satisfying the following requirements:

1. constructibility: we can construct graphs having these
properties;

2. inclusion: any property Pd subsumes all properties Pi

with i = 0, . . . , d − 1: that is, a graph having prop-
erty Pd is guaranteed to also have all properties Pi

for i < d;

3. convergence: as d increases, the set of graphs having
property Pd “converges” to G: that is, there exists
a value of index d = D such that all graphs having
property PD are isomorphic to G.

In the rest of this section, we establish our construction of
the properties Pd, which we will call the dK-series. We be-
gin with the observation that the most basic properties of a
network topology characterize its connectivity. The coarsest
connectivity property is the average node degree k̄ = 2m/n,
where n = |V | and m = |E| are the numbers of nodes and
links in a given graph G(V, E). Therefore, the first prop-
erty P0 in our dK-series Pd is that the graph’s average de-
gree k̄ has the same value as in the given graph G. In Fig-
ure 2 we schematically depict the set of all graphs having
property P0 as 0K-graphs, defining the largest circle. Gen-
eralizing, we adopt the term dK-graphs to represent the set
of all graphs having property Pd.

The P0 property tells us the average number of links per
node, but it does not tell us the distribution of degrees
across nodes. In particular, we do not know the number of
nodes n(k) of each degree k in the graph. We define property
P1 to capture this information: P1 is therefore the property

that the graph’s node degree distribution P (k) = n(k)/n1

has the same form as in the given graph G. It is conve-
nient to call P (k) the 1K-distribution. P1 implies at least
as much information about the network as P0, but not vice
versa: given P (k), we find k̄ =

∑

kP (k). P1 provides more
information than P0, and it is therefore a more restrictive
metric: the set of 1K-graphs is a subset of the set of 0K-
graphs. Figure 2 illustrates this inclusive relationship by
drawing the set of 1K-graphs inside the set of 0K-graphs.

Continuing to d = 2, we note that the degree distri-
bution constrains the number of nodes of each degree in
the network, but it does not describe the interconnectiv-
ity of nodes with given degrees. That is, it does not pro-
vide any information on the total number m(k, k′) of links
between nodes of degree k and k′. We define the third
property P2 in our series as the property that the graph’s
joint degree distribution (JDD) has the same form as in
the given graph G. The JDD, or the 2K-distribution, is
P (k1, k2) = m(k1, k2)µ(k1, k2)/(2m), where µ(k1, k2) is 2 if
k1 = k2 and 1 otherwise. The JDD describes degree corre-
lations for pairs of connected nodes. Given P (k1, k2), we
can calculate P (k) = (k̄/k)

∑

k′ P (k, k′), but not vice versa.
Consequently, the set of 2K-graphs is a subset of the 1K-
graphs. Therefore, Figure 2 depicts the smaller 2K-graph
circle inside 1K.

We can continue to increase the amount of connectivity in-
formation by considering degree correlations among greater
numbers of connected nodes. To move beyond 2K, we must
begin to distinguish the various geometries that are possi-
ble in interconnecting d nodes. To introduce P3, we require
the following two components: 1) wedges: chains of 3 nodes
connected by 2 edges, called the P∧(k1, k2, k3) component;
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component:

As the two geometries occur with different frequencies among
nodes having different degrees, we require a separate proba-
bility distribution for each configuration. We call these two
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For P4, we need the above six distributions: where instead
of indices ∧,△ we use for d = 3, we have all non-isomorphic
graphs of size 4 numbered by 1, . . . , 6. We note that the

1Sacrificing a certain amount of rigor, we interchangeably
use the enumeration of nodes having some property in a
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typically using edge swaps for degree-preserving constraints 

Generating Constrained Random Graphs Using Multiple Edge Switches 1.7:3

Fig. 1. Simple Markov graph for a constraint on a graph of (i) three nodes with (ii) given in- and out-degree
distributions and (iii) without multiple edges but possibly self-loops. Nonvalid swaps are represented by
self-loops in this Markov graph, which has thus a constant degree.

graph that does not belong to GC, we draw a self-loop from Gi to Gi. In this context, the
reshuffling procedure is a random walk in the Markov graph, that is, a Markov chain
[Sinclair 1993] converging to an equilibrium distribution whose probabilities can be
obtained from the transition matrix of the Markovian process. If the Markov graph has
constant degrees (i.e., the in-degree and out-degree of all graphs of the Markov graph
are all the same), the reshuffling process is uniform. If the Markov graph is connected,
all possible graphs are reachable. If it is both connected and has constant degrees, the
process leads to uniformly random elements of GC. See an illustration in Figure 1.

Edge switching methods have been used to generate random graph samples in vari-
ous instances [Rao et al. 1996; Kannan et al. 1997; Stauffer and Barbosa 2005; Cooper
et al. 2006; Feder et al. 2006; Mahadevan et al. 2006; Bansal et al. 2008] and have been
studied and improved in various directions [Roberts 2000; Milo et al. 2003; Gkantsidis
et al. 2003; Artzy-Randrup and Stone 2005; Viger and Latapy 2005]. To use such a
switching method, one has nonetheless to ensure that all graphs of GC are present in
the equilibrium distribution of the random walk with an identical probability, that is
ensure that:

(1) all graphs of GC are uniformly drawable, and
(2) all graphs of GC are exhaustively reachable.

Uniformity is guaranteed by the S&H approach within a given connected portion
of the Markov graph. While Miklós and Podani [2004] show uniformity in the case
of degree distribution constraints, the proof they mention in Appendix A of the same
reference can easily be extended to any kind of constraint. A sketch of this proof is
given by the following reasoning: “Holding” on failed trials is equivalent to connecting
a Markov graph node to itself as many times as there are failure possibilities. Thus, the
in- and out-degree of all Markov graph nodes will be equal to the number of trials (both
failed and successful ones), which is strictly the same for every graph of GC, since it only
depends on the constant number of links of graphs of GC. Finally, for a random walk in
a Markov graph where all nodes have the same in- and out-degree, the probability of
being on a given node is asymptotically uniform.

Exhaustivity relates to the issue of whether the whole Markov graph is connected,
that is, the existence of a path going from any node to any other node of the Markov
graph. In Markov chain terminology, the chain is said to be irreducible. To our knowl-
edge, existing theorems on exhaustivity concern simple constraints C, essentially
reduced to little more than the conservation of the original degree sequence (i.e., in the
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Exploring a graph space with prescribed constraints 
typically using edge swaps for degree-preserving constraints 

or higher-level constraints using so-called “k-edge swaps” 

(Tabourier, Cointet, Roth, 2011, 2016)
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Fig. 3. Markov graph of GC0 for various k-switching procedures: dashed blue arrows correspond to k = 2,
plain green arrows to k = 4. For readability purposes, we simplified the representation by discarding self-
loops and multiple edges of the Markov graph.

The number of connected components of the Markov graph is thus a monotonously
decreasing function of k converging at most for k = M. As increasing k guarantees
a better coverage of the Markov graph, the relevance of this method essentially lies
in improving the confidence in the random mixing achieved by rewiring procedures,
rather than addressing convergence speed issues between parenthesis.1

3.3. Data Storage Format
One of the first requirements for the data format is to enable quick random selection
of edges and subsequent edge switches (i.e., update of the graph). A straightforward
option for drawing random links consists of using an array of edges and picking a
random integer lower or equal to the array size. To store the graph, by contrast, we
opt for an adjacency list, especially because the operation of constraint checking often
requires to access neighbors of a given node (which is possible in O(δ), where δ is the
node degree). Eventually, we maintain and update two data structures: an adjacency
list and an array. These two data strutures have a comparable size and are most
efficient for link selection and graph operations, respectively.

3.4. Complexity
Carrying out a k-switch in G ∈ GC consists of:

(1) finding k random edges in G represented as an adjacency list, in O(k);
(2) k-switching their extremities into a resulting graph G′, in O(k);
(3) verifying that G′ respects the constraint set, that is, G′ ∈ GC, in O( fGC ) related to a

given design of the constraint check.

C should be such that there exists a tractable check on any graph of GC.2 In best cases,
when it is possible to incrementally check if G′ ∈ GC relatively to the k switched edges

1In practice, increasing k comes at the price of an increasingly slow convergence of the walk, in terms of
switch trials, as detailed in Section 3.4.
2Various optimizations of this very step are open to a discussion that depends on the chosen external set of
constraints C, but are obviously outside the scope of the present article. In particular, we assume that fGC is
not for example, exponential in N or M.
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k = 3
k = 2

k = 3k = 2

k = 4

k = 4

Fig. 4. Left: Illustration of the increasing possibilities of k-switches for k ∈ {2, 3, 4} in the case of “R-B-G”
triangles. Right: Number of “R-B-G” triangles with respect to the number of k-switch trials, for k ∈ {2, 3, 4}
(averages and corresponding confidence intervals computed over 10,000 simulations for each k).

increase k up to a “sufficient” value, that is, such that the measurements appear to
plateau from some k0, as is classical in asymptotical convergence of simulation-based
methods. As shown in the following section, it seems empirically sensible that even
very small values of k are often satisfactory.

4. ILLUSTRATIONS ON PRACTICAL CASES
In addition to the example shown in Figure 3 on an extremely small graph, we now
illustrate this asymptotical approach on four practical cases for various kinds of con-
straints. For the sake of clarity, in Appendix 3.4, we gathered the descriptions of con-
straint checking algorithms and their respective complexity. Note that, here, we only
consider constraints on graphs without multiple edges; the higher-order switching ap-
proach may nonetheless be used in the context of multigraphs.

4.1. Constraint Based on Oriented and Colored Triangles
We first suggest the following quite fictitious constraint C1.

(1) C∅
1 . The graph is directed and made of N nodes, each having one outgoing

and one incoming arc;
(2) C+

1 .
—The nodes are equally divided into three groups of N/3 nodes, each

denoted with a color: red (R), green (G), or blue (B);
—The graph is made of N/3 isolated and oriented cycles of three nodes

(that is, N isolated triangles such that each node points to a single
other node of the triangle).

Graphs of GC1 are thus such that each node exactly has an in-degree of 1 and an out-
degree of 1. Suppose we want to randomly draw an element of GC1 using k-switches,
starting with an initial graph G0 such that each triangle is “R-G-B-oriented,” that is, a
red node points to a green one which points to a blue one which points to the red one.

For k = 2, the only possible k-switch is identity; therefore, in the Markov graph,
it is not possible to leave G0. For k = 3, possible k-switches reshuffle links within
a given triangle, as illustrated in Figure 4; the associated walk can only lead to
“R-G-B-oriented” and “R-B-G-oriented” triangles. For k = 4, link exchanges are possi-
ble between triangles, so eventually all combinations of colored triangles are possible
(including nontrichromatic triangles “R-R-R”, “R-G-G”, etc.).3

3The corresponding Markov graph is thus connected for k = 4, which hence happens much before k = M.
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Graphs of GC1 are thus such that each node exactly has an in-degree of 1 and an out-
degree of 1. Suppose we want to randomly draw an element of GC1 using k-switches,
starting with an initial graph G0 such that each triangle is “R-G-B-oriented,” that is, a
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For k = 2, the only possible k-switch is identity; therefore, in the Markov graph,
it is not possible to leave G0. For k = 3, possible k-switches reshuffle links within
a given triangle, as illustrated in Figure 4; the associated walk can only lead to
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Table III. Experimental Values Obtained for Constraint C2 on Different Inputs (with N: Number of
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WWW-50K 50,000 143,592 2 ∼1,000m 13MB
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4.3. Constraint Based on Triangles
As mentioned earlier, it is straightforward to apply the method with constraints on
undirected graphs. C3, and C4 in the following, are of this kind.

C3 = C∅
3 ∪ C+

3 is as follows.

—C∅
3. The graph is undirected, with a fixed degree distribution, has no mul-

tiple edges nor self-loops.
—C+

3 . The number of (undirected) triangles remains the same.
The interest of C3 can be illustrated in the case of a collaboration network. The

amount of distinct motifs of size four will be our target observables. In that case, C3
practically aims at checking whether the size and shape of the close neighborhood of
a scientist in this field is related to the cohesiveness between agents—that is, more
precisely, to check how the tendency to do triangular interactions influences the number
and connectedness of neighbors at distance 1 and 2.

G0 is an undirected graph of collaborations between scientists extracted from the
Anthropological Index Online database.6 The dataset we use focuses on a specific sub-
field consisting of Scandinavian archeology-related papers published over the period
2000–2009: nodes are paper authors, links feature collaborations between authors in
these papers. G0 contains 273 individuals and 280 links.

Figure 6 illustrates the results of the corresponding exploration of the random graph
space defined by C3, and Table IV shows the results motifs of size four, for which there
is significant variation from G0 for k > 2. More importantly, these diverging results do
not appear when using k = 2, but only appear from k > 2, being then similar for all
k ∈ {3, 4, 5, 6}. Thus, the usual S&H method—unlike the generalized switching method
with k ≥ 3—cannot be used to generate a uniformly random subset of GC3 on this
particular dataset: The obtained sample would be significantly biased. In other words,

6Available from http://aio.anthropology.org.uk/aiosearch.
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3.1 Main Idea

The main intuition behind the model is to create self-similar graphs, recursively. We begin with an

initiator graph K1, with N1 nodes and E1 edges, and by recursion we produce successively larger

graphs K2,K3, . . . such that the kth graph Kk is on Nk = Nk
1 nodes. If we want these graphs to exhibit a

version of the Densification power law (Leskovec et al., 2005b), then Kk should have Ek = Ek
1 edges.

This is a property that requires some care in order to get right, as standard recursive constructions

(for example, the traditional Cartesian product or the construction of Barabási et al., 2001) do not

yield graphs satisfying the densification power law.

It turns out that the Kronecker product of two matrices is the right tool for this goal. The

Kronecker product is defined as follows:

Definition 1 (Kronecker product of matrices) Given two matrices A = [ai, j] and B of sizes n×m

and n′ ×m′ respectively, the Kronecker product matrix C of dimensions (n ·n′)× (m ·m′) is given by

C = A⊗B .
=

⎛

⎜

⎜

⎜

⎝

a1,1B a1,2B . . . a1,mB
a2,1B a2,2B . . . a2,mB

...
...

. . .
...

an,1B an,2B . . . an,mB

⎞

⎟

⎟

⎟

⎠

.

We then define the Kronecker product of two graphs simply as the Kronecker product of their

corresponding adjacency matrices.

Definition 2 (Kronecker product of graphs, Weichsel, 1962) If G and H are graphs with adja-

cency matrices A(G) and A(H) respectively, then the Kronecker product G⊗H is defined as the

graph with adjacency matrix A(G)⊗A(H).

Observation 1 (Edges in Kronecker-multiplied graphs)

Edge (Xi j,Xkl) ∈ G⊗H iff (Xi,Xk) ∈ G and (Xj,Xl) ∈ H.

where Xi j and Xkl are nodes in G⊗H, and Xi, Xj, Xk and Xl are the corresponding nodes in G and

H, as in Figure 1.

The last observation is crucial, and deserves elaboration. Basically, each node in G⊗H can be

represented as an ordered pair Xi j, with i a node of G and j a node of H, and with an edge joining

Xi j and Xkl precisely when (Xi,Xk) is an edge of G and (Xj,Xl) is an edge of H. This is a direct

consequence of the hierarchical nature of the Kronecker product. Figure 1(a–c) further illustrates

this by showing the recursive construction of G⊗H, when G = H is a 3-node chain. Consider node

X1,2 in Figure 1(c): It belongs to the H graph that replaced node X1 (see Figure 1(b)), and in fact is

the X2 node (i.e., the center) within this small H-graph.

We propose to produce a growing sequence of matrices by iterating the Kronecker product:

Definition 3 (Kronecker power) The kth power of K1 is defined as the matrix K
[k]
1 (abbreviated to

Kk), such that:

K
[k]
1 = Kk = K1 ⊗K1 ⊗ . . .K1

︸ ︷︷ ︸

k times

= Kk−1 ⊗K1
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of K1 of K2 = K1 ⊗K1

Figure 1: Example of Kronecker multiplication: Top: a “3-chain” initiator graph and its Kronecker

product with itself. Each of the Xi nodes gets expanded into 3 nodes, which are then

linked using Observation 1. Bottom row: the corresponding adjacency matrices. See

Figure 2 for adjacency matrices of K3 and K4.

(a) K3 adjacency matrix (27×27) (b) K4 adjacency matrix (81×81)

Figure 2: Adjacency matrices of K3 and K4, the 3rd and 4th Kronecker power of K1 matrix as defined

in Figure 1. Dots represent non-zero matrix entries, and white space represents zeros.

Notice the recursive self-similar structure of the adjacency matrix.

Definition 4 (Kronecker graph) Kronecker graph of order k is defined by the adjacency matrix

K
[k]
1 , where K1 is the Kronecker initiator adjacency matrix.

The self-similar nature of the Kronecker graph product is clear: To produce Kk from Kk−1, we

“expand” (replace) each node of Kk−1 by converting it into a copy of K1, and we join these copies
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Figure 21: EPINIONS who-trusts-whom social network: Overlayed patterns of real network and

the fitted Kronecker graph using only 4 parameters (2× 2 initiator matrix). Again, the

synthetic Kronecker graph matches all the properties of the real network.

surprisingly good fits and the estimation procedure is the most robust and converges the fastest.

Using larger initiator matrices N1 > 2 generally helps improve the likelihood but not dramatically.

In terms of matching the network properties we also gent a slight improvement by making the

model more complex. Figure 22 gives the percent improvement in log-likelihood as we make the

model more complex. We use the log-likelihood of a 2× 2 model as a baseline and estimate the

log-likelihood at the MLE for larger initiator matrices. Again, models with more parameters tend to

fit better. However, sometimes due to zero-padding of a graph adjacency matrix they actually have

lower log-likelihood (as for example seen in Table 2).

6.6 Scalability

Last we also empirically evaluate the scalability of the KRONFIT. The experiment confirms that

KRONFIT runtime scales linearly with the number of edges E in a graph G. More precisely, we

performed the following experiment.

We generated a sequence of increasingly larger synthetic graphs on N nodes and 8N edges, and

measured the time of one iteration of gradient descent, that is, sample 1 million permutations and

evaluate the gradients. We started with a graph on 1,000 nodes, and finished with a graph on 8

million nodes, and 64 million edges. Figure 23(a) shows KRONFIT scales linearly with the size of

the network. We plot wall-clock time vs. size of the graph. The dashed line gives a linear fit to the

data points.

7. Discussion

Here we discuss several of the desirable properties of the proposed Kronecker graphs.

1031

(Leskovec, Chakrabarti, 
Kleinberg, Faloutsos, 
Ghahramin, 2010)



processes structure

processes

structure
ERGMs, p1, p*  

Markov graphs  

SOAMs

Preferential attachment

using 

reconstructing 

Scoring methods

PA-based models 

Rewiring models

Cost optimization

Prescribed structure,  
edge swaps

Subgraph-based

Agent-based models

A  BRIEF  TAXONOMY…

Link prediction, classifiers

Kronecker graphs



REWIRING / OPTIMIZATION MODELS
Watts-Strogatz’ small-world model: 
prescribed fixed degree, rewiring

(Watts, Strogatz, 1999)



REWIRING / OPTIMIZATION MODELS
Watts-Strogatz’ small-world model: 
prescribed fixed degree, rewiring

(Watts, Strogatz, 1999)

Fabrikant et al.’ heuristically-optimized 
trade-off model (HOT): 
competition-based preferential 
attachment (Fabrikant et 

al., 2002)



REWIRING / OPTIMIZATION MODELS
Watts-Strogatz’ small-world model: 
prescribed fixed degree, rewiring

(Watts, Strogatz, 1999)

Fabrikant et al.’ heuristically-optimized 
trade-off model (HOT): 
competition-based preferential 
attachment (Fabrikant et 

al., 2002)

Colizza et al.’ “Network structure from 
selection principles” 
rewiring according to  
a global cost function

3

(Top Left and Right) to networks in which almost ev-
ery node has the same degree k =< k > (Bottom Left
and Right). In addition, a sharp transition is observed
in terms of the average clustering coefficient C =< Ci >,
as defined in eq.(3).

Pajek Pajek

Pajek Pajek

FIG. 3: Graph representation of four typical networks with:
Top Left: α = 0.4, r = 1.05, n = 100; Top Right: α =
0.7, r = 1.05, n = 140; Bottom Left: α = 0.5, r = 2.0, n =
50; Bottom Right: α = 2.0, r = 1.05, n = 100. The graphs
have been produced with the Pajek software.

For α > 1 (fig. 4 Top), the system undergoes a clear
phase transition as the value of the ratio r increases pass-
ing from a regime characterized by zero clustering to
one in which the clustering coefficient becomes different
from zero. The cost function in eq.(1) has two compet-
ing forces: the minimization of the graph diameter and
the minimization of node degree. When α > 1 the min-
imization of node degree dominates and the system at-
tempts to minimize the degree of each node resulting in a
peaked distribution around the mean value < k >, with
a non-trivial topology characterized by zero clustering
and exhibiting the presence of long loops. (fig. 3 Bottom
Right). When the ratio r reaches the critical value rc(α),
one obtains a non-zero clustering coefficient.

This transition also occurs for α < 1. However, when
α < 1 one obtains an additional phase transition at
r′c(α), where the system passes from optimal networks
exhibiting a non-zero clustering coefficient, to ones with
no clustering at all. Starting from very small values of
r, we observe topologies characterized by the presence of
few interconnected hubs (i.e. sites with very high degree
[2, 18]) linked to many peripheral sites (fig. 3 Top Left).
Indeed, when α < 1, the tendency expressed by the cost
function is to decrease the graph diameter, i.e. a measure
of the mutual distance among pairs of nodes.

The emergence of this extra phase transition under-
scores the importance of the concavity (convexity) of the
cost function.

The limiting case α → 0 would correspond to the min-
imization of the standard graph distance, leading, in the
region r ∼ 1, to a single central hub connected to n−1 pe-

ripheral nodes, which share the remaining l−n+1 links.
This situation leads to non-zero clustering. The mini-
mization of the graph distance corresponds to a limiting
case of [16] as well; however, in [16] there is no constraint
on the number of links l, so that the optimal network
they find is a clique, in which each node is connected to
each other.
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FIG. 4: Mean clustering coefficient for the optimal config-
uration Copt normalized to the mean clustering coefficient,
Crand, of the random configuration. Top: results for net-
work size n = 70 and α = 2.0; in the inset the behaviour
of the ratio Copt/CrandP is shown, where CrandP represents
the mean clustering of a random graph with the same degree
distribution P (k) as the optimized network. Bottom: results
for network size n = 70 and α = 0.35; in the inset (n = 50,
α = 0.35) both the critical values, rc(α) and r′c(α), are shown.

Increasing the ratio r does not favour adding other
links among the hubs, because their already high degrees
would only increase further. Hence the system reorga-
nizes by increasing the number of hubs and automatically
reducing their degrees, trying to avoid expensive trian-
gles between hubs. When the transition occurs, at r′c(α),
the network does not exhibit hubs any more, but tends to
become quite homogeneous in the sense that almost every
node has coordination close to the average value < k >.
Even in this regime the optimal topology is distinctly dif-
ferent from the random one. In fact, it displays a peaked
degree distribution around the mean value < k > with-
out significant clustering (fig. 3 Bottom Left). The loops
formed have the maximum possible length in order to
reduce the energy function. Adding extra links to the
network forces the loops to become smaller, still avoid-
ing clustering up to a second critical value of r, rc(α).
Beyond this value, ’triangles’ appear leading to a tran-
sition similar to the one encountered for α > 1 (fig. 4
Bottom, inset).

(Colizza, Banavar, 
Maritan, Rinaldo, 2004)
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Figure 1: A graphical representation of the blogosphere (a). Squares represent blogs and circles blog-posts. Each post belongs
to a blog, and can contain hyper-links to other posts and resources on the web. We create two networks: a blog network (b) of
citations (links) between blogs, and a post network (c) with time stamped links between blog posts.

Blog models. There has been extensive work modeling dif-
ferent characteristics of blogs. In (Venolia ) a large blogging
community was studied and a model for blog mortality was
presented. The authors of (Kumar et al. 2003) argue that
a random linking behavior cannot explain the dynamics of
the community structure. Instead of linking randomly the
authors of (Karandikar et al. 2008) applied the preferential
attachment rule (see below) to create realistic links (w.r.t.
degree and component distribution).

A different line of work models the information propa-
gation. The authors of (Adar and Adamic 2005) discov-
ered patterns in linking behavior and used a support vector
machine. Epidemiological models have also been used in
this context. See (Bailey 1975) for details on such models,
like the “SIS” (susceptible–infected–susceptible) and “SIR”
(susceptible–infected–removed) ones. In (Gruhl et al. 2004)
an SIR-based model of information propagation with respect
to topics was presented. Later the authors of (Leskovec et
al. 2007b) presented an SIS-based model producing realis-
tic cascades, i.e., graphs of information propagation.

Related models. There have also been several models for
human behavior in other dynamic environments that may
serve as inspiration for a model for blog behavior. One line
of research models the structure of networks. Prevalent is the
“preferential attachment” rule (Barabási and Albert 1999)
and variations (Chung and Lu 2006; Pennock et al. 2002).
In (Pathak, Mane, and Srivastava 2006) a socio-cognitive
network based on email communication was modeled.

Another line of research models temporal aspects, for ex-
ample the time between answering two consecutive emails
at a single user which follows a power law with exponent
-1.5, see (Barabasi 2005; Vazquez et al. 2006). Similarly,
in (Kleinberg 2002) a weighted 2-state Markov Chain based
model of inter-arrival times of emails was introduced. How-
ever, while the models are intuitive, they fail to generate
temporal bursty behavior is found in blogs.

Basically, none of the above models is able to match as
many properties of real blogs as our upcoming ZC model
which models both temporal and topological characteris-
tics.

3 Background and Problem Definition
Next we describe patterns that we would like our model to
produce. We distinguish two types of patterns: topological

and temporal. Topological patterns refer to structural pat-
terns of the blog network, like degree distribution, while
temporal patterns involve time, like uniformity/burstiness
measures of the number of posts per unit time.

First we describe known patterns, and then show a pattern
we discovered in the course of this work. To our knowledge
this work presents the most complete model that matches the
largest number of patterns that we have seen in the literature
so far; earlier models typically focus on modeling the emer-
gence of only one of these patterns. Modeling more than
a single characteristic is important as models become more
realistic, more powerful and more widely applicable.

Old Patterns
In our earlier work (Leskovec et al. 2007b; McGlohon et al.
2007) that forms the background of this paper we analyzed
a data set of 45,000 blogs and approximately 2.2 million
posts. We defined two networks of interest: the Blog net-
work (Fig. 1(b)) and the Post network (Fig. 1(c)). In the Post
network, nodes represent individual posts and each edge rep-
resents a hyper-link from one post to another, earlier post.
Edges are labeled with time-stamps of the link occurrence
(that is, the time at which the source of the link, the refer-
ring post, was written). Posts across blogs that participate in
the same discussion can be viewed as being part of the same
conversation tree (i.e., cascade). In the Blog network, nodes
represent blogs. A directed edge from blog B1 to B2 means
that at some point in time, a post at B1 linked to a post at
B2 (Fig. 1). Studying these two networks, we pointed out
several interesting patterns:

BID (topological) The probability density function (PDF) of
the Blog In-Degree follows a power law.

PID (topological) The PDF of the Post In-Degree follows a
power law.

SCT (topological) The PDF of the Size of non-trivial Con-
versation Trees in the post network follows a power law.

PP (temporal) The Popularity of Posts, i.e., the number of
in-links of a post, versus post age, drops with a power law
with exponent − 1.6.

IFD (temporal) The activity of blogs is bursty and self-
similar. The Information Fractal Dimensions are in large
part between 0.72 and 0.88. We explain the concept of in-
formation fractal dimension in the next section.

For example, Figure 4 shows the topological power laws

Model decision treeBurstiness of blog posting behavior

Network of posts and blogs
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Introduction

Recently, the divide between the physical world and online social
realities has been blurred by the new possibilities afforded by real-
time communication and broadcasting, which appear to greatly
enhance our social and cognitive capabilities in establishing and
maintaining social relations. The combination of mobile devices
with new tools like Twitter, Foursquare, Blippy, Tumblr, Yahoo!
Meme, Google Hotspot, etc., are defining a new era in which we
can be continuously connected with an ever-increasing number of
individuals through constant digital communication composed of
small messages and bits of information. Thus, while new data and
computational approaches to social science [1,2,3] finally enable us
to answer a large number of long-standing questions [4,5,6], we are
also increasingly confronted with new questions related to the way
social interaction and communication change in online social
environments: What is the impact that modern technology has on
social interaction? How do we manage the ever-increasing amount
of information that demands our attention?

In 1992, R. I. M. Dunbar [7] measured the correlation between
neocortical volume and typical social group size in a wide range of
primates and human communities. The result was as surprising as
it was far-reaching. The limit imposed by neocortical processing
capacity appears to define the number of individuals with whom it
is possible to maintain stable interpersonal relationships. There-
fore, the size of the brain’s neocortex represents a biological
constraint on social interaction that limits humans’ social network
size to between 100 and 200 individuals [8], i.e. Dunbar’s number.
McCarty et al. [9] independently attempted to measure typical
group size using two different methods and obtained a number of
291, roughly twice Dunbar’s estimate.

Biological constraints on social interaction go along with other
real-world physical limitations. After all, a person’s time is finite
and each person must make her own choices about how best to use
it given the priority of personal preferences, interests, needs, etc.
The idea that attention and time are scarce resources led H.
Simon [10] to apply standard economic tools to study these
constraints and introduce the concept of an Attention Economy
with mechanisms similar to our everyday monetary economy. The
increasingly fast pace of modern life and overwhelming availability
of information has brought a renewed interest in the study of the
economy of attention with important applications both in business
[11] and the study collective human behavior [12]. On one hand,
it can be argued that microblogging tools facilitate the way we
handle social interactions and that this results in an online world
where human social limits are finally lifted, making predictions
such as the Dunbar’s number obsolete. Microblogging and online
tools, on the other hand, might be analogous to a pocket calculator
that, while speeding up the way we can do simple math, does not
improve our cognitive capabilities for mathematics. In this case,
the basic cognitive limits to social interactions are not surpassed in
the digital world. In this paper we show that the latter hypothesis is
supported by the analysis of real world data that identify the
presence of Dunbar’s limit in Twitter, one of the most successful
online microblogging tools.

Materials and Methods

Here we analyze a massive dataset of Twitter conversations
accrued over the span of six months and investigate the possibility
of deviation from Dunbar’s number in the number of stable social
relations mediated by this tool. The pervasive nature of Twitter,
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Agents communicate with each other by replying to messages.
When agent i receives a message the message is placed in an
internal queue that allows up to qmax messages to be handled at
each time step. In the presence of finite resources each agent has to
make informed decisions about which are the most important
messages to answer. This is a direct consequence of the physical
constraints that we model by assuming messages are stored
according to a priority set proportional to the total degree of the
sender j. In this way, we implicitly assume that the degree is a
proxy for popular and socially active agents who are more likely to
be answered. A user’s queue provides a minimal and simplistic
representation of the finite cognitive and time capabilities that
each user has by imposing limits and prioritization to active
communications. At each time step, each agent goes through its
queue and performs the following simple operations:

- The agent replies to a random number St of messages between
0 and the number of messages qi present in the queue. The
messages to be replied to are selected proportionally to the
priority of the sending agent (its total degree). A message is
then sent to j, the node we are replying to, and the
corresponding weight wij is incremented by one.

- Messages the agent has replied to are deleted from the queue
and all incoming messages are added to the queue in a
prioritized order until the number of messages reaches qmax.
Messages in excess of qmax are discarded.

The dynamic process is then repeated for a total number of time
steps T. In order to initialize the process and take into account the
effect of endogenous random effects, each agent can broadcast a
message to all of its contacts with some small probability p. One
may think of this message as a common status change, or a TV
appearance, news story, or any other information not necessarily
authored by the sending agent. Since these messages are not

specifically directed from one user to another, they do not
contribute to the weight of the edges through which they flow. We
have studied this simple model by using an underlying network of
N = 105 nodes and different scale-free topologies. For each
simulation T = 26104 time steps have been considered and the
plots are made evaluating the medians among at least 1000 runs.

In Figure 3 we report the results of simulations in a directed
heavy-tailed network with a power-law tail similar to those
observed for the measured network (see Information S1). The
figures clearly show a behavior compatible with the empirical data.
The peak that maximizes the information output per connection is
linearly proportional to qmax, supporting the idea that the physical
constraints entailed in the queue’s maximum capacity along with
the prioritization that gives importance to popular senders are at
the origin of the observed behavior. We have also performed an
extensive sensitivity analysis on the broadcasting probability p, the
time scale T, and have investigated the effect of agent
heterogeneity by studying populations in where each agent’s
capacity qmax,i is randomly distributed according to a Gaussian
distribution centered around qmax with standard deviation s. In
Information S1 we present an extensive discussion concerning the
weak effects that variations in the broadcasting probability, p, the
time scale, T, and agent heterogeneity have on the obtained
results.

Results and Discussion

In order to provide insight into the mechanisms behind the
behavior we observe in the model, we consider the point of view of
a single user. A set of ki directed links is assigned to the user i. This
user can interact with ki/2 other users and their contacts, sending
messages to them through ki

out = ki/2 outgoing links or receiving
messages from them through ki

in = ki/2 incoming links. The
dynamics of our model are then applied for T time steps. The

Figure 2. Connection weight and Reciprocated connections. A) Out-weight as a function of the out-degree. The average weight of each
outward connection gradually increases until it reaches a maximum near 150–200 contacts, signaling that a maximum level of social activity has been
reached. Above this point, an increase in the number of contacts can no longer be sustained with the same amount of dedication to each. The red
line corresponds to the average out-weight, while the gray shaded area illustrates the 50% confidence interval. B) Number of reciprocated
connections, r, as a function of kin. As the number of people demanding our attention increases, it will eventually saturate our ability to reply leading
to the flat behavior displayed in the dashed region.
doi:10.1371/journal.pone.0022656.g002
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along with its widespread adoption by all layers of society, makes it
an ideal proxy for the study of social interactions [13,14,15,16].
We have analyzed over 380 million tweets from which we were
able to extract 25 million conversations. Each Twitter conversa-
tion takes on the form of a tree of tweets, where each tweet comes
as a reply to another. By projecting this forest of trees onto the
users that author each tweet, we are able to generate a weighted
social network connecting over 1.7 million individuals (see
Figure 1).

In the generated network each node corresponds to a single
user. The out-degree of the nodes is the number of users the node
replies to, while the in-degree corresponds to the number of
different nodes it receives a reply from. When A follows B, A
subscribes to receive all the updates published by B. A is then one
of B’s followers and B is one of A’s friends. Previous studies have
mostly focused on the network induced by this follower-friend
relationship [15,17,18,19]. In any study about stable social
relations in online media, as indicated by studies about Dunbar’s
number, it is important to discount occasional social interactions.
For this reason we focus on stronger relationships [13] in our
study, considering just active communication from one user to
another by means of a genuine social interaction between them. In
our network [20,21] we introduce the weight wij of each edge,
defined as the number of times user i replies to user j as a direct
measurement of the interaction strength between two users and
stable relations will be those with a large weight. A simple way to
measure this effect is to calculate the average weight of each
interaction by a user as a function of his total number of
interactions. Users that have only recently joined Twitter will have
few friends and very few interactions with them. As time goes by,
stable users will acquire more and more friends, but the number of
replies that they send to other users will increase consistently only
in stable social interactions. Eventually, a point is reached where
the number of contacts surpasses the user’s ability to keep in
contact with them.

This saturation process will necessarily lead to some relation-
ships being more valued than others. Each individual tries to
optimize her resources by prioritizing these interactions. To
quantify the strength of these interactions, we studied the quantity
vi

out , defined as the average social strength of active initiate

relationship:

vout
i (T):

P
j

wij(T)

kout
i

This quantity corresponds to the average weight per outgoing edge
of each individual where T represents the time window for data
aggregation. We measure this quantity in our data set as shown in
Figure 2A. The data shows that this quantity reaches a maximum
between 100 and 200 friends, in agreement with Dunbar’s
prediction (see figure 2A). This finding suggests that even though
modern social networks help us to log all the people with whom we
meet and interact, they are unable to overcome the biological and
physical constraints that limit stable social relations. In Figure 2B,
we plot kout

i , the number of reciprocated connections, as a function
of the number of the in-degree. kout

i saturates between 200 and 300
even though the number of incoming connections continues to
increase. This saturation indicates that after this point the system is
in a new regime; new connections can be reciprocated, but at a
much smaller rate than before. This can be accounted for by
spurious exchanges we make with some contacts with whom we do
not maintain an active relationship.

If we assume that biological and time constraints are the key
ingredients in fixing Dunbar’s number, then it is interesting to
define a minimal agent model entailing those key features in the
form of a dynamical process. We consider a static network where
each agent (node) i is connected to its nearest neighbors j through
two directed edges. Whenever a message is sent from node i to
node j, the weight of the (i, j) edge, wij is increased by one. The total
activity of each user is given by the sum over all of its outgoing
edges and the out-degree is equal to the in-degree edge. In this way
we are able to distinguish between incoming and outgoing
messages. Indeed, in Twitter user relationships are directed and
not always reciprocal. One of Twitter’s features is to always show
replies, even from users we do not explicitly follow. In this way,
conversations can flow back and forth between users regardless of
whether or not they have an explicit mutual follower relationship.

Figure 1. Reply trees and user network. A) The set of all trees is a forest. Each time a user replies, the corresponding tweet is connected to
another one, resulting in a tree structure. B) Combining all the trees in the forest and projecting them onto the users results in a directed and
weighted network that can be used as a proxy for relationships between users. The number of outgoing (incoming) connections of a given user is
called the out (in) degree and is represented by kout (kin). The number of messages flowing along each edge is called the degree, w. The probability
density function P(kout) (P(kint)) indicates the probability that any given node has kout (kin) out (in) degree and it is called the out (in) degree
distribution and is a measure of node diversity on the network.
doi:10.1371/journal.pone.0022656.g001
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along with its widespread adoption by all layers of society, makes it
an ideal proxy for the study of social interactions [13,14,15,16].
We have analyzed over 380 million tweets from which we were
able to extract 25 million conversations. Each Twitter conversa-
tion takes on the form of a tree of tweets, where each tweet comes
as a reply to another. By projecting this forest of trees onto the
users that author each tweet, we are able to generate a weighted
social network connecting over 1.7 million individuals (see
Figure 1).

In the generated network each node corresponds to a single
user. The out-degree of the nodes is the number of users the node
replies to, while the in-degree corresponds to the number of
different nodes it receives a reply from. When A follows B, A
subscribes to receive all the updates published by B. A is then one
of B’s followers and B is one of A’s friends. Previous studies have
mostly focused on the network induced by this follower-friend
relationship [15,17,18,19]. In any study about stable social
relations in online media, as indicated by studies about Dunbar’s
number, it is important to discount occasional social interactions.
For this reason we focus on stronger relationships [13] in our
study, considering just active communication from one user to
another by means of a genuine social interaction between them. In
our network [20,21] we introduce the weight wij of each edge,
defined as the number of times user i replies to user j as a direct
measurement of the interaction strength between two users and
stable relations will be those with a large weight. A simple way to
measure this effect is to calculate the average weight of each
interaction by a user as a function of his total number of
interactions. Users that have only recently joined Twitter will have
few friends and very few interactions with them. As time goes by,
stable users will acquire more and more friends, but the number of
replies that they send to other users will increase consistently only
in stable social interactions. Eventually, a point is reached where
the number of contacts surpasses the user’s ability to keep in
contact with them.

This saturation process will necessarily lead to some relation-
ships being more valued than others. Each individual tries to
optimize her resources by prioritizing these interactions. To
quantify the strength of these interactions, we studied the quantity
vi

out , defined as the average social strength of active initiate

relationship:

vout
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This quantity corresponds to the average weight per outgoing edge
of each individual where T represents the time window for data
aggregation. We measure this quantity in our data set as shown in
Figure 2A. The data shows that this quantity reaches a maximum
between 100 and 200 friends, in agreement with Dunbar’s
prediction (see figure 2A). This finding suggests that even though
modern social networks help us to log all the people with whom we
meet and interact, they are unable to overcome the biological and
physical constraints that limit stable social relations. In Figure 2B,
we plot kout

i , the number of reciprocated connections, as a function
of the number of the in-degree. kout

i saturates between 200 and 300
even though the number of incoming connections continues to
increase. This saturation indicates that after this point the system is
in a new regime; new connections can be reciprocated, but at a
much smaller rate than before. This can be accounted for by
spurious exchanges we make with some contacts with whom we do
not maintain an active relationship.

If we assume that biological and time constraints are the key
ingredients in fixing Dunbar’s number, then it is interesting to
define a minimal agent model entailing those key features in the
form of a dynamical process. We consider a static network where
each agent (node) i is connected to its nearest neighbors j through
two directed edges. Whenever a message is sent from node i to
node j, the weight of the (i, j) edge, wij is increased by one. The total
activity of each user is given by the sum over all of its outgoing
edges and the out-degree is equal to the in-degree edge. In this way
we are able to distinguish between incoming and outgoing
messages. Indeed, in Twitter user relationships are directed and
not always reciprocal. One of Twitter’s features is to always show
replies, even from users we do not explicitly follow. In this way,
conversations can flow back and forth between users regardless of
whether or not they have an explicit mutual follower relationship.

Figure 1. Reply trees and user network. A) The set of all trees is a forest. Each time a user replies, the corresponding tweet is connected to
another one, resulting in a tree structure. B) Combining all the trees in the forest and projecting them onto the users results in a directed and
weighted network that can be used as a proxy for relationships between users. The number of outgoing (incoming) connections of a given user is
called the out (in) degree and is represented by kout (kin). The number of messages flowing along each edge is called the degree, w. The probability
density function P(kout) (P(kint)) indicates the probability that any given node has kout (kin) out (in) degree and it is called the out (in) degree
distribution and is a measure of node diversity on the network.
doi:10.1371/journal.pone.0022656.g001
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Agents communicate with each other by replying to messages.
When agent i receives a message the message is placed in an
internal queue that allows up to qmax messages to be handled at
each time step. In the presence of finite resources each agent has to
make informed decisions about which are the most important
messages to answer. This is a direct consequence of the physical
constraints that we model by assuming messages are stored
according to a priority set proportional to the total degree of the
sender j. In this way, we implicitly assume that the degree is a
proxy for popular and socially active agents who are more likely to
be answered. A user’s queue provides a minimal and simplistic
representation of the finite cognitive and time capabilities that
each user has by imposing limits and prioritization to active
communications. At each time step, each agent goes through its
queue and performs the following simple operations:

- The agent replies to a random number St of messages between
0 and the number of messages qi present in the queue. The
messages to be replied to are selected proportionally to the
priority of the sending agent (its total degree). A message is
then sent to j, the node we are replying to, and the
corresponding weight wij is incremented by one.

- Messages the agent has replied to are deleted from the queue
and all incoming messages are added to the queue in a
prioritized order until the number of messages reaches qmax.
Messages in excess of qmax are discarded.

The dynamic process is then repeated for a total number of time
steps T. In order to initialize the process and take into account the
effect of endogenous random effects, each agent can broadcast a
message to all of its contacts with some small probability p. One
may think of this message as a common status change, or a TV
appearance, news story, or any other information not necessarily
authored by the sending agent. Since these messages are not

specifically directed from one user to another, they do not
contribute to the weight of the edges through which they flow. We
have studied this simple model by using an underlying network of
N = 105 nodes and different scale-free topologies. For each
simulation T = 26104 time steps have been considered and the
plots are made evaluating the medians among at least 1000 runs.

In Figure 3 we report the results of simulations in a directed
heavy-tailed network with a power-law tail similar to those
observed for the measured network (see Information S1). The
figures clearly show a behavior compatible with the empirical data.
The peak that maximizes the information output per connection is
linearly proportional to qmax, supporting the idea that the physical
constraints entailed in the queue’s maximum capacity along with
the prioritization that gives importance to popular senders are at
the origin of the observed behavior. We have also performed an
extensive sensitivity analysis on the broadcasting probability p, the
time scale T, and have investigated the effect of agent
heterogeneity by studying populations in where each agent’s
capacity qmax,i is randomly distributed according to a Gaussian
distribution centered around qmax with standard deviation s. In
Information S1 we present an extensive discussion concerning the
weak effects that variations in the broadcasting probability, p, the
time scale, T, and agent heterogeneity have on the obtained
results.

Results and Discussion

In order to provide insight into the mechanisms behind the
behavior we observe in the model, we consider the point of view of
a single user. A set of ki directed links is assigned to the user i. This
user can interact with ki/2 other users and their contacts, sending
messages to them through ki

out = ki/2 outgoing links or receiving
messages from them through ki

in = ki/2 incoming links. The
dynamics of our model are then applied for T time steps. The

Figure 2. Connection weight and Reciprocated connections. A) Out-weight as a function of the out-degree. The average weight of each
outward connection gradually increases until it reaches a maximum near 150–200 contacts, signaling that a maximum level of social activity has been
reached. Above this point, an increase in the number of contacts can no longer be sustained with the same amount of dedication to each. The red
line corresponds to the average out-weight, while the gray shaded area illustrates the 50% confidence interval. B) Number of reciprocated
connections, r, as a function of kin. As the number of people demanding our attention increases, it will eventually saturate our ability to reply leading
to the flat behavior displayed in the dashed region.
doi:10.1371/journal.pone.0022656.g002
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Introduction

Recently, the divide between the physical world and online social
realities has been blurred by the new possibilities afforded by real-
time communication and broadcasting, which appear to greatly
enhance our social and cognitive capabilities in establishing and
maintaining social relations. The combination of mobile devices
with new tools like Twitter, Foursquare, Blippy, Tumblr, Yahoo!
Meme, Google Hotspot, etc., are defining a new era in which we
can be continuously connected with an ever-increasing number of
individuals through constant digital communication composed of
small messages and bits of information. Thus, while new data and
computational approaches to social science [1,2,3] finally enable us
to answer a large number of long-standing questions [4,5,6], we are
also increasingly confronted with new questions related to the way
social interaction and communication change in online social
environments: What is the impact that modern technology has on
social interaction? How do we manage the ever-increasing amount
of information that demands our attention?

In 1992, R. I. M. Dunbar [7] measured the correlation between
neocortical volume and typical social group size in a wide range of
primates and human communities. The result was as surprising as
it was far-reaching. The limit imposed by neocortical processing
capacity appears to define the number of individuals with whom it
is possible to maintain stable interpersonal relationships. There-
fore, the size of the brain’s neocortex represents a biological
constraint on social interaction that limits humans’ social network
size to between 100 and 200 individuals [8], i.e. Dunbar’s number.
McCarty et al. [9] independently attempted to measure typical
group size using two different methods and obtained a number of
291, roughly twice Dunbar’s estimate.

Biological constraints on social interaction go along with other
real-world physical limitations. After all, a person’s time is finite
and each person must make her own choices about how best to use
it given the priority of personal preferences, interests, needs, etc.
The idea that attention and time are scarce resources led H.
Simon [10] to apply standard economic tools to study these
constraints and introduce the concept of an Attention Economy
with mechanisms similar to our everyday monetary economy. The
increasingly fast pace of modern life and overwhelming availability
of information has brought a renewed interest in the study of the
economy of attention with important applications both in business
[11] and the study collective human behavior [12]. On one hand,
it can be argued that microblogging tools facilitate the way we
handle social interactions and that this results in an online world
where human social limits are finally lifted, making predictions
such as the Dunbar’s number obsolete. Microblogging and online
tools, on the other hand, might be analogous to a pocket calculator
that, while speeding up the way we can do simple math, does not
improve our cognitive capabilities for mathematics. In this case,
the basic cognitive limits to social interactions are not surpassed in
the digital world. In this paper we show that the latter hypothesis is
supported by the analysis of real world data that identify the
presence of Dunbar’s limit in Twitter, one of the most successful
online microblogging tools.

Materials and Methods

Here we analyze a massive dataset of Twitter conversations
accrued over the span of six months and investigate the possibility
of deviation from Dunbar’s number in the number of stable social
relations mediated by this tool. The pervasive nature of Twitter,
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Agents communicate with each other by replying to messages.
When agent i receives a message the message is placed in an
internal queue that allows up to qmax messages to be handled at
each time step. In the presence of finite resources each agent has to
make informed decisions about which are the most important
messages to answer. This is a direct consequence of the physical
constraints that we model by assuming messages are stored
according to a priority set proportional to the total degree of the
sender j. In this way, we implicitly assume that the degree is a
proxy for popular and socially active agents who are more likely to
be answered. A user’s queue provides a minimal and simplistic
representation of the finite cognitive and time capabilities that
each user has by imposing limits and prioritization to active
communications. At each time step, each agent goes through its
queue and performs the following simple operations:

- The agent replies to a random number St of messages between
0 and the number of messages qi present in the queue. The
messages to be replied to are selected proportionally to the
priority of the sending agent (its total degree). A message is
then sent to j, the node we are replying to, and the
corresponding weight wij is incremented by one.

- Messages the agent has replied to are deleted from the queue
and all incoming messages are added to the queue in a
prioritized order until the number of messages reaches qmax.
Messages in excess of qmax are discarded.

The dynamic process is then repeated for a total number of time
steps T. In order to initialize the process and take into account the
effect of endogenous random effects, each agent can broadcast a
message to all of its contacts with some small probability p. One
may think of this message as a common status change, or a TV
appearance, news story, or any other information not necessarily
authored by the sending agent. Since these messages are not

specifically directed from one user to another, they do not
contribute to the weight of the edges through which they flow. We
have studied this simple model by using an underlying network of
N = 105 nodes and different scale-free topologies. For each
simulation T = 26104 time steps have been considered and the
plots are made evaluating the medians among at least 1000 runs.

In Figure 3 we report the results of simulations in a directed
heavy-tailed network with a power-law tail similar to those
observed for the measured network (see Information S1). The
figures clearly show a behavior compatible with the empirical data.
The peak that maximizes the information output per connection is
linearly proportional to qmax, supporting the idea that the physical
constraints entailed in the queue’s maximum capacity along with
the prioritization that gives importance to popular senders are at
the origin of the observed behavior. We have also performed an
extensive sensitivity analysis on the broadcasting probability p, the
time scale T, and have investigated the effect of agent
heterogeneity by studying populations in where each agent’s
capacity qmax,i is randomly distributed according to a Gaussian
distribution centered around qmax with standard deviation s. In
Information S1 we present an extensive discussion concerning the
weak effects that variations in the broadcasting probability, p, the
time scale, T, and agent heterogeneity have on the obtained
results.

Results and Discussion

In order to provide insight into the mechanisms behind the
behavior we observe in the model, we consider the point of view of
a single user. A set of ki directed links is assigned to the user i. This
user can interact with ki/2 other users and their contacts, sending
messages to them through ki

out = ki/2 outgoing links or receiving
messages from them through ki

in = ki/2 incoming links. The
dynamics of our model are then applied for T time steps. The

Figure 2. Connection weight and Reciprocated connections. A) Out-weight as a function of the out-degree. The average weight of each
outward connection gradually increases until it reaches a maximum near 150–200 contacts, signaling that a maximum level of social activity has been
reached. Above this point, an increase in the number of contacts can no longer be sustained with the same amount of dedication to each. The red
line corresponds to the average out-weight, while the gray shaded area illustrates the 50% confidence interval. B) Number of reciprocated
connections, r, as a function of kin. As the number of people demanding our attention increases, it will eventually saturate our ability to reply leading
to the flat behavior displayed in the dashed region.
doi:10.1371/journal.pone.0022656.g002
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along with its widespread adoption by all layers of society, makes it
an ideal proxy for the study of social interactions [13,14,15,16].
We have analyzed over 380 million tweets from which we were
able to extract 25 million conversations. Each Twitter conversa-
tion takes on the form of a tree of tweets, where each tweet comes
as a reply to another. By projecting this forest of trees onto the
users that author each tweet, we are able to generate a weighted
social network connecting over 1.7 million individuals (see
Figure 1).

In the generated network each node corresponds to a single
user. The out-degree of the nodes is the number of users the node
replies to, while the in-degree corresponds to the number of
different nodes it receives a reply from. When A follows B, A
subscribes to receive all the updates published by B. A is then one
of B’s followers and B is one of A’s friends. Previous studies have
mostly focused on the network induced by this follower-friend
relationship [15,17,18,19]. In any study about stable social
relations in online media, as indicated by studies about Dunbar’s
number, it is important to discount occasional social interactions.
For this reason we focus on stronger relationships [13] in our
study, considering just active communication from one user to
another by means of a genuine social interaction between them. In
our network [20,21] we introduce the weight wij of each edge,
defined as the number of times user i replies to user j as a direct
measurement of the interaction strength between two users and
stable relations will be those with a large weight. A simple way to
measure this effect is to calculate the average weight of each
interaction by a user as a function of his total number of
interactions. Users that have only recently joined Twitter will have
few friends and very few interactions with them. As time goes by,
stable users will acquire more and more friends, but the number of
replies that they send to other users will increase consistently only
in stable social interactions. Eventually, a point is reached where
the number of contacts surpasses the user’s ability to keep in
contact with them.

This saturation process will necessarily lead to some relation-
ships being more valued than others. Each individual tries to
optimize her resources by prioritizing these interactions. To
quantify the strength of these interactions, we studied the quantity
vi

out , defined as the average social strength of active initiate

relationship:

vout
i (T):

P
j

wij(T)

kout
i

This quantity corresponds to the average weight per outgoing edge
of each individual where T represents the time window for data
aggregation. We measure this quantity in our data set as shown in
Figure 2A. The data shows that this quantity reaches a maximum
between 100 and 200 friends, in agreement with Dunbar’s
prediction (see figure 2A). This finding suggests that even though
modern social networks help us to log all the people with whom we
meet and interact, they are unable to overcome the biological and
physical constraints that limit stable social relations. In Figure 2B,
we plot kout

i , the number of reciprocated connections, as a function
of the number of the in-degree. kout

i saturates between 200 and 300
even though the number of incoming connections continues to
increase. This saturation indicates that after this point the system is
in a new regime; new connections can be reciprocated, but at a
much smaller rate than before. This can be accounted for by
spurious exchanges we make with some contacts with whom we do
not maintain an active relationship.

If we assume that biological and time constraints are the key
ingredients in fixing Dunbar’s number, then it is interesting to
define a minimal agent model entailing those key features in the
form of a dynamical process. We consider a static network where
each agent (node) i is connected to its nearest neighbors j through
two directed edges. Whenever a message is sent from node i to
node j, the weight of the (i, j) edge, wij is increased by one. The total
activity of each user is given by the sum over all of its outgoing
edges and the out-degree is equal to the in-degree edge. In this way
we are able to distinguish between incoming and outgoing
messages. Indeed, in Twitter user relationships are directed and
not always reciprocal. One of Twitter’s features is to always show
replies, even from users we do not explicitly follow. In this way,
conversations can flow back and forth between users regardless of
whether or not they have an explicit mutual follower relationship.

Figure 1. Reply trees and user network. A) The set of all trees is a forest. Each time a user replies, the corresponding tweet is connected to
another one, resulting in a tree structure. B) Combining all the trees in the forest and projecting them onto the users results in a directed and
weighted network that can be used as a proxy for relationships between users. The number of outgoing (incoming) connections of a given user is
called the out (in) degree and is represented by kout (kin). The number of messages flowing along each edge is called the degree, w. The probability
density function P(kout) (P(kint)) indicates the probability that any given node has kout (kin) out (in) degree and it is called the out (in) degree
distribution and is a measure of node diversity on the network.
doi:10.1371/journal.pone.0022656.g001
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tion takes on the form of a tree of tweets, where each tweet comes
as a reply to another. By projecting this forest of trees onto the
users that author each tweet, we are able to generate a weighted
social network connecting over 1.7 million individuals (see
Figure 1).

In the generated network each node corresponds to a single
user. The out-degree of the nodes is the number of users the node
replies to, while the in-degree corresponds to the number of
different nodes it receives a reply from. When A follows B, A
subscribes to receive all the updates published by B. A is then one
of B’s followers and B is one of A’s friends. Previous studies have
mostly focused on the network induced by this follower-friend
relationship [15,17,18,19]. In any study about stable social
relations in online media, as indicated by studies about Dunbar’s
number, it is important to discount occasional social interactions.
For this reason we focus on stronger relationships [13] in our
study, considering just active communication from one user to
another by means of a genuine social interaction between them. In
our network [20,21] we introduce the weight wij of each edge,
defined as the number of times user i replies to user j as a direct
measurement of the interaction strength between two users and
stable relations will be those with a large weight. A simple way to
measure this effect is to calculate the average weight of each
interaction by a user as a function of his total number of
interactions. Users that have only recently joined Twitter will have
few friends and very few interactions with them. As time goes by,
stable users will acquire more and more friends, but the number of
replies that they send to other users will increase consistently only
in stable social interactions. Eventually, a point is reached where
the number of contacts surpasses the user’s ability to keep in
contact with them.

This saturation process will necessarily lead to some relation-
ships being more valued than others. Each individual tries to
optimize her resources by prioritizing these interactions. To
quantify the strength of these interactions, we studied the quantity
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This quantity corresponds to the average weight per outgoing edge
of each individual where T represents the time window for data
aggregation. We measure this quantity in our data set as shown in
Figure 2A. The data shows that this quantity reaches a maximum
between 100 and 200 friends, in agreement with Dunbar’s
prediction (see figure 2A). This finding suggests that even though
modern social networks help us to log all the people with whom we
meet and interact, they are unable to overcome the biological and
physical constraints that limit stable social relations. In Figure 2B,
we plot kout

i , the number of reciprocated connections, as a function
of the number of the in-degree. kout

i saturates between 200 and 300
even though the number of incoming connections continues to
increase. This saturation indicates that after this point the system is
in a new regime; new connections can be reciprocated, but at a
much smaller rate than before. This can be accounted for by
spurious exchanges we make with some contacts with whom we do
not maintain an active relationship.

If we assume that biological and time constraints are the key
ingredients in fixing Dunbar’s number, then it is interesting to
define a minimal agent model entailing those key features in the
form of a dynamical process. We consider a static network where
each agent (node) i is connected to its nearest neighbors j through
two directed edges. Whenever a message is sent from node i to
node j, the weight of the (i, j) edge, wij is increased by one. The total
activity of each user is given by the sum over all of its outgoing
edges and the out-degree is equal to the in-degree edge. In this way
we are able to distinguish between incoming and outgoing
messages. Indeed, in Twitter user relationships are directed and
not always reciprocal. One of Twitter’s features is to always show
replies, even from users we do not explicitly follow. In this way,
conversations can flow back and forth between users regardless of
whether or not they have an explicit mutual follower relationship.

Figure 1. Reply trees and user network. A) The set of all trees is a forest. Each time a user replies, the corresponding tweet is connected to
another one, resulting in a tree structure. B) Combining all the trees in the forest and projecting them onto the users results in a directed and
weighted network that can be used as a proxy for relationships between users. The number of outgoing (incoming) connections of a given user is
called the out (in) degree and is represented by kout (kin). The number of messages flowing along each edge is called the degree, w. The probability
density function P(kout) (P(kint)) indicates the probability that any given node has kout (kin) out (in) degree and it is called the out (in) degree
distribution and is a measure of node diversity on the network.
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(Gonçalves, Perra, 
Vespignani, 2011)

Specific stochastic rules 
see Message Queuing Models

1. each user has a message queue of 
some maximum size 

2. they reply to a random number of 
messages, proportionally to the out-
degree of the sender 

3. the model features a simple, uniform 
initialization process

quantity vi
out(T) is evaluated for different values of ki (see Figure 4).

In this mean-field approach we ignore the dynamics of all users
connected to i. Instead, we use them as the source of messages that
focus our attention to the behavior of a single individual connected
to them. The average number of messages that i receives at each
time step is ,R.,ki

2. This is given by the fact that the number of
messages each user receives is proportional to the number of
connections times the probability that a connected individual
sends a message to the agent. The latter probability increases with
the popularity of the agent i and is proportional to its degree ki.
Two different regimes are therefore found to be a function of ki.
Given a small number of contacts ki, the number of messages

that the user i receives is small with respect to the queue size qmax.

At each time step i can in principle reply to all received messages.
The number of outgoing replies in this regime scales with the
number of received messages. For large enough T the user will be
able to reply to all the received messages ,R. and the average

number of replies for connections will scale as vout
i !

SRT
ki

!ki.

For a number of contacts larger than the queue size qmax, the user
will be unable to reply to all messages in the queue. Once the
saturation effect takes place, the user will on average reply to the
same number of messages at each time step. The average number

of replies per connection will therefore scale as vout
i !

qmax ,i

ki
.

These are indeed the two clear regimes observed in the empirical
data and in the model simulations. Furthermore, in Figure 4 we
consider the inclusion of Gaussian noise with varying standard
deviation s in the queue size qmax of agents. The plots show that
different noise levels do not affect the model’s behavior. Despite its
simplicity, this mean-field analysis clearly shows the key mecha-
nism and ingredients of our model: limitation of resources and
prioritization of tasks.
The simple model that we have introduced offers a basic

explanation of a seemingly complex phenomena observed in the
empirical patterns on Twitter data and offers support to Dunbar’s
hypothesis of a biological limit to the number of relationships than
can be simultaneously maintained by a single individual. The
social interaction mechanism we propose: limited attention and
internal prioritization of interactions, is sufficiently parsimonious
and robust to be applicable to a wide range of social scenarios.
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Figure 3. Result of running our model on a heterogeneous network made of N=105, nodes with degree distribution P kð Þ~k
{c: with

c= -2.4 and s=10. Different curves correspond to different queue size. The inset shows the linear dependence of the peak on the queue size q.
Each curve is the median of 1,000 to 2,000 runs of T = 26104 time steps. In the inset, we plot the position of the peak as a function of the queue size.
The linear relation is clear.
doi:10.1371/journal.pone.0022656.g003

Figure 4. Results for the single user and different values of s,
the inter-user queue size variance. We fixed the average queue
size at qmax,i = 50 and extracted the priorities of user neighbors from a
power-law statistical distribution with exponent c=22.1. For each ki we
run T = 500 time steps and present the medians among 103 runs.
doi:10.1371/journal.pone.0022656.g004
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constraints that we model by assuming messages are stored
according to a priority set proportional to the total degree of the
sender j. In this way, we implicitly assume that the degree is a
proxy for popular and socially active agents who are more likely to
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representation of the finite cognitive and time capabilities that
each user has by imposing limits and prioritization to active
communications. At each time step, each agent goes through its
queue and performs the following simple operations:

- The agent replies to a random number St of messages between
0 and the number of messages qi present in the queue. The
messages to be replied to are selected proportionally to the
priority of the sending agent (its total degree). A message is
then sent to j, the node we are replying to, and the
corresponding weight wij is incremented by one.

- Messages the agent has replied to are deleted from the queue
and all incoming messages are added to the queue in a
prioritized order until the number of messages reaches qmax.
Messages in excess of qmax are discarded.

The dynamic process is then repeated for a total number of time
steps T. In order to initialize the process and take into account the
effect of endogenous random effects, each agent can broadcast a
message to all of its contacts with some small probability p. One
may think of this message as a common status change, or a TV
appearance, news story, or any other information not necessarily
authored by the sending agent. Since these messages are not

specifically directed from one user to another, they do not
contribute to the weight of the edges through which they flow. We
have studied this simple model by using an underlying network of
N= 105 nodes and different scale-free topologies. For each
simulation T= 26104 time steps have been considered and the
plots are made evaluating the medians among at least 1000 runs.
In Figure 3 we report the results of simulations in a directed

heavy-tailed network with a power-law tail similar to those
observed for the measured network (see Information S1). The
figures clearly show a behavior compatible with the empirical data.
The peak that maximizes the information output per connection is
linearly proportional to qmax, supporting the idea that the physical
constraints entailed in the queue’s maximum capacity along with
the prioritization that gives importance to popular senders are at
the origin of the observed behavior. We have also performed an
extensive sensitivity analysis on the broadcasting probability p, the
time scale T, and have investigated the effect of agent
heterogeneity by studying populations in where each agent’s
capacity qmax,i is randomly distributed according to a Gaussian
distribution centered around qmax with standard deviation s. In
Information S1 we present an extensive discussion concerning the
weak effects that variations in the broadcasting probability, p, the
time scale, T, and agent heterogeneity have on the obtained
results.

Results and Discussion

In order to provide insight into the mechanisms behind the
behavior we observe in the model, we consider the point of view of
a single user. A set of ki directed links is assigned to the user i. This
user can interact with ki/2 other users and their contacts, sending
messages to them through ki

out = ki/2 outgoing links or receiving
messages from them through ki

in = ki/2 incoming links. The
dynamics of our model are then applied for T time steps. The

Figure 2. Connection weight and Reciprocated connections. A) Out-weight as a function of the out-degree. The average weight of each
outward connection gradually increases until it reaches a maximum near 150–200 contacts, signaling that a maximum level of social activity has been
reached. Above this point, an increase in the number of contacts can no longer be sustained with the same amount of dedication to each. The red
line corresponds to the average out-weight, while the gray shaded area illustrates the 50% confidence interval. B) Number of reciprocated
connections, r, as a function of kin. As the number of people demanding our attention increases, it will eventually saturate our ability to reply leading
to the flat behavior displayed in the dashed region.
doi:10.1371/journal.pone.0022656.g002
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Networks are a powerful abstraction with applicability to a variety of scientific fields. Models explaining
their morphology and growth processes permit a wide range of phenomena to be more systematically
analysed and understood. At the same time, creating such models is often challenging and requires insights
that may be counter-intuitive. Yet there currently exists no general method to arrive at better models. We
have developed an approach to automatically detect realistic decentralised network growth models from
empirical data, employing a machine learning technique inspired by natural selection and defining a unified
formalism to describe such models as computer programs. As the proposed method is completely general
and does not assume any pre-existing models, it can be applied ‘‘out of the box’’ to any given network. To
validate our approach empirically, we systematically rediscover pre-defined growth laws underlying several
canonical network generation models and credible laws for diverse real-world networks. We were able to
find programs that are simple enough to lead to an actual understanding of the mechanisms proposed,
namely for a simple brain and a social network.

I
ncreasingly many scientific domains rely on the concept of networks to represent an observable state of a
system, where networks are usually seen as the outcome of a generative process. For systems without cen-
tralised control, these generative processes consist of local interactions between entities, be they proteins,

neurons, organisms, people or organisations.
While current technological advances have been making it increasingly easy to collect datasets for large net-

works, it is difficult to extract models from this data. This difficulty can be attributed both to the sheer size of the
datasets and to the non-linear dynamics of many of these decentralised systems, which resist reductionist
methodologies. Another difficulty is posed by the mapping between generative models and observable networks
since there is a many-to-many correspondence between generative models and observable networks. A network
may be explained by different models and a model – provided it is stochastic in nature – may be capable of
generating different classes of networks due to the amplification of initial random fluctuations.

Following conventional scientific methodology, researchers devise models that can account for a network and
then test the quality of the model against a number of metrics. Much-cited examples include preferential
attachment1, competition between nodes2,3, team assembly mechanisms4, random networks with constraints5–7,
inter alia. Models are typically based on intuition or prior evidence that such and such process appears to be
particularly important in the formation of interactions. A problem here is that of human bias in looking for good
models. There is always the possibility that high-quality models are counter-intuitive, and thus unlikely to be
proposed by researchers.

The work we report in this paper work is aligned with the idea of creating artificial scientists. Parts of the
scientific method are automated, namely the generation and refinement of hypothesis, as well as their testing
against observables. For example, in a work with some parallels to the ideas presented in this paper, scientific laws
are extracted from experimental data using genetic programming8.

There have been some preliminary attempts at using genetic programming to search for network models21–23,
and to structural analysis and community detection24. However, to the best of our knowledge, we provide the first
proof-of-concept application of symbolic regression to discover and select plausible morphogenetic processes for
real-world networks. The method we propose can be applied to both synthetic networks and on real-world
networks. In the case of synthetic networks, it makes it possible to discover the exact generative rule used to
construct the particular type of network in question, while in the case of real-world networks, it proposes a
generative rule that robustly reproduces the original topological features. Furthermore, in contrast with previous
works, our approach relies only on local information and uses a parameter-free fitness function without any ad-
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2Centre d’Analyse et de Mathématique Sociales (UMR 8557 CNRS-EHESS) 190 av. de France, 75013 Paris, France.

Networks are a powerful abstraction with applicability to a variety of scientific fields. Models explaining
their morphology and growth processes permit a wide range of phenomena to be more systematically
analysed and understood. At the same time, creating such models is often challenging and requires insights
that may be counter-intuitive. Yet there currently exists no general method to arrive at better models. We
have developed an approach to automatically detect realistic decentralised network growth models from
empirical data, employing a machine learning technique inspired by natural selection and defining a unified
formalism to describe such models as computer programs. As the proposed method is completely general
and does not assume any pre-existing models, it can be applied ‘‘out of the box’’ to any given network. To
validate our approach empirically, we systematically rediscover pre-defined growth laws underlying several
canonical network generation models and credible laws for diverse real-world networks. We were able to
find programs that are simple enough to lead to an actual understanding of the mechanisms proposed,
namely for a simple brain and a social network.

I
ncreasingly many scientific domains rely on the concept of networks to represent an observable state of a
system, where networks are usually seen as the outcome of a generative process. For systems without cen-
tralised control, these generative processes consist of local interactions between entities, be they proteins,

neurons, organisms, people or organisations.
While current technological advances have been making it increasingly easy to collect datasets for large net-

works, it is difficult to extract models from this data. This difficulty can be attributed both to the sheer size of the
datasets and to the non-linear dynamics of many of these decentralised systems, which resist reductionist
methodologies. Another difficulty is posed by the mapping between generative models and observable networks
since there is a many-to-many correspondence between generative models and observable networks. A network
may be explained by different models and a model – provided it is stochastic in nature – may be capable of
generating different classes of networks due to the amplification of initial random fluctuations.

Following conventional scientific methodology, researchers devise models that can account for a network and
then test the quality of the model against a number of metrics. Much-cited examples include preferential
attachment1, competition between nodes2,3, team assembly mechanisms4, random networks with constraints5–7,
inter alia. Models are typically based on intuition or prior evidence that such and such process appears to be
particularly important in the formation of interactions. A problem here is that of human bias in looking for good
models. There is always the possibility that high-quality models are counter-intuitive, and thus unlikely to be
proposed by researchers.

The work we report in this paper work is aligned with the idea of creating artificial scientists. Parts of the
scientific method are automated, namely the generation and refinement of hypothesis, as well as their testing
against observables. For example, in a work with some parallels to the ideas presented in this paper, scientific laws
are extracted from experimental data using genetic programming8.

There have been some preliminary attempts at using genetic programming to search for network models21–23,
and to structural analysis and community detection24. However, to the best of our knowledge, we provide the first
proof-of-concept application of symbolic regression to discover and select plausible morphogenetic processes for
real-world networks. The method we propose can be applied to both synthetic networks and on real-world
networks. In the case of synthetic networks, it makes it possible to discover the exact generative rule used to
construct the particular type of network in question, while in the case of real-world networks, it proposes a
generative rule that robustly reproduces the original topological features. Furthermore, in contrast with previous
works, our approach relies only on local information and uses a parameter-free fitness function without any ad-

OPEN

SUBJECT AREAS:
SCIENTIFIC DATA

MACHINE LEARNING

SOFTWARE

APPLIED MATHEMATICS

Received

20 December 2013

Accepted

30 July 2014

Published

5 September 2014

Correspondence and
requests for materials

should be addressed to
T.M. (telmo@

telmomenezes.com)

SCIENTIFIC REPORTS | 4 : 6284 | DOI: 10.1038/srep06284 1

(Menezes, 
Roth, 2014)



NETWORK MODELS  AS  TREE-BASED PROGRAMS

• in- and out-degrees k, k’

• undirected, directed and reverse 
distances d, dD and dR

• sequential identifier i

• +, -, *, /

• xy, ex, log, abs, min, max

• >, <, =, =0

• affinity function ψ

Vocabulary: 
the usual 
suspects

Grammar:  
trees and 
operators

Indeed, the simplicity of building blocks can be leveraged and used
to facilitate the definition of generators where certain vertices have
natural affinity for each other. This is the affinity function y, which
uses the modulo operation (remainder of the division of one number
by another) to divide the sequence identifier space into a number of g
groups, returns a if target and origin nodes i and j belong to the same
group (i.e. in case of ‘‘affinity’’), and b otherwise:

y i,j,g,a,bð Þ~
a, if i mod gð Þ: j mod gð Þ
b, otherwise,

!
ð3Þ

From now on, we will consider i and j to be implicit parameters and
write the function simply as: y(g, a, b).

We now have a methodological framework that we can use to
generate plausible models for network generators. Several runs on
the same target network may generate different models — although
we will show experimental evidence that they tend to converge on the
same behaviors. It is now up to the researcher to select amongst them,
possibly using his domain knowledge. A more objective considera-
tion is the trade-off between simplicity and precision. Our repres-

entation of generators allows for a very straight-forward measure of
model complexity: the program length. Trivially, the program length
is an upper bound on the Kolmogorov complexity15 of the model. This
allows us to apply a quantified version of Occam’s Razor: all other
things being equal, choose the model with the lowest program length.
In practice, depending on the variations in precision, the researcher
might wish to sacrifice some parsimony for some precision, or vice-
versa.

Application to real and synthetic networks
To assess our method we start by testing if we can discover generators
for networks that were produced by generators we defined ourselves.
According to our generator semantics, two classical network types
can be defined in a very succinct fashion.

For an ER random network,

wER i,jð Þ~c ð4Þ

where c is any constant value; for a generator based on Preferential
Attachment (PA) as in the Barabási-Albert model,

Figure 1 | Automatic discovery of models. Evolutionary loop including the synthetic network generation process. The top part of this figure describes
evolution at the generator population level, while the bottom (framed) part describes the evolution of a network for a given generator.

www.nature.com/scientificreports
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bottom-up evaluation of the tree (i , j , g , a,b) =
(

a, if i mod g = j mod g

b, otherwise,

where i and j are the sequential identifiers of the origin and target vertices,
g is the number of groups, a is the value of the function in case of affinity and
b in case of no affinity. This function uses the modulo operation (remainder of
the division of one number by another) to divide the sequence identifier space
into g groups. This provides a building block that facilitates the definition of
generators where certain vertices have natural affinity for each other. From now
on, we will consider i and j to be implicit parameters and write the function
simply as:  (g , a,b).

The evolutionary search algorithm maintains one or two generators at each
time: Go is the generator that produced the networks with the lowest dissimilar-
ity to the target networks so far. Gs is the generator with the shortest program
that produced a network with a dissimilarity not more than 10% worse than Go .
At any moment, it is possible that Go = Gs . This is a measure against bloat –
the accumulation of needless complexity in the generator programs (Banzhaf
& Langdon, 2002). For every evolutionary search generation, a parent genera-
tor is randomly selected from {Go ,Gs}. This parent generator is then cloned and
mutated to produce the child generator Gc . Mutation consists of randomly se-
lecting a sub-tree, removing it and replacing it with another randomly generated
sub-tree. Gc is used to produce a synthetic network and the dissimilarity of this
network to the target is computed. The dissimilarity and program length of Gc is
compared against Go and Gs , and Gc will replace one or both if appropriate. The
search will terminate once Go and Gs remain unchanged for 1000 generations.
Gs will be taken as the final result.

We now have a methodological framework that we can use to generate plau-
sible models for network generators. As we are evolving computer programs,
this approach belongs to the family of algorithms known as genetic program-
ming (Koza, 1992; Poli et al. , 2008).

Several runs on the same target network may generate different models – al-
though we will show experimental evidence that they will tend to converge on
the same behaviors. It is now up to the researcher to select amongst them, possi-
bly using his domain knowledge. A more objective consideration is the trade-off
between simplicity and precision. Our representation of generators allows for a
very straight-forward measure of model complexity: the program length. Triv-
ially, the program length is an upper bound on the Kolmogorov complexity (Li
& Vitanyi, 1997) of the model. This allows us to apply a quantified version of
Occam’s Razor: all other things being equal, choose the model with the low-
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FITNESS FUNCTION  AS  NORMALIZED NETWORK METRICS

• in- and out-degree 
distributions

• directed and undirected 
PageRank distributions

• distance distributions

• triadic profiles (Milo et al., 2005)

• Earth Mover’s distance for distributions

• Improvement against random

• Worst improvement

Metrics set: the usual 
suspects
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on intuition or prior evidence that such and such process appears to be particu-
larly important in the formation of interactions. A problem here is that of human
bias in looking for good models. There is always the possibility that high-quality
models are counter-intuitive, and thus unlikely to be proposed by researchers.

This work is aligned with the idea of creating artificial scientists. Parts of the
scientific method are automated, namely the generation and refinement of hy-
pothesis, as well as their testing against observables. For example, in a work with
some parallels to the ideas presented in this paper, scientific laws are extracted
from experimental data using genetic programming (Schmidt & Lipson (2009)).

2 Generator search

We propose that machine learning techniques can be harnessed in helping re-
searchers generate such models. Our approach consists of employing a form of
evolutionary computation, a type of search inspired by Darwinism where evolu-
tionary pressure is created to guide a population of solutions to an increasingly
higher quality. In this case our individuals are network generative models, and
their quality is a measure of how much a synthetic network generated by a model
approximates the real observable network.

Two fundamental issues have to be addressed in implementing this tech-
nique: how to represent models in an uniform way that can be recombined and
how to measure the similarity between a synthetic and a real network.

The first problem touches on a limitation of current “network science”: there
is no formal way of representing processes similar to the way differential equa-
tions are used to model many systems. To address this we introduce the con-
cept of network generator as a computer program — or simply generators for
the purposes of this article. We define a network generative process as a se-
quence of discrete steps where a new arc is created at each step. The process
can be straightforwardly applied to both directed and undirected networks. At
any given moment, there is a set of possible arcs that could be created. A gener-
ator becomes fully defined if it provides a way to prefer some arc over the oth-
ers. Instead of attempting to define a deterministic selection process we create
a stochastic one — recognizing that many of the generative processes that pro-
duce complex networks have some degree of intrinsic randomness. Our genera-
tors thus attribute weights to arcs in a sample extracted from the set of all possi-
ble arcs, then stochastically selecting an arc from this sample with a probability
for each arc a given by:

Pa = wa�
s2S ws

The generator is thus a function g (vi , v j ) that assigns a weight wi j to a pair
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The generator is thus a function w(i , j ) that assigns a weight wi j to a pair of
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discover weight computation functions which produce realistic networks. Camille
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larly important in the formation of interactions. A problem here is that of human
bias in looking for good models. There is always the possibility that high-quality
models are counter-intuitive, and thus unlikely to be proposed by researchers.

This work is aligned with the idea of creating artificial scientists. Parts of the
scientific method are automated, namely the generation and refinement of hy-
pothesis, as well as their testing against observables. For example, in a work with
some parallels to the ideas presented in this paper, scientific laws are extracted
from experimental data using genetic programming (Schmidt & Lipson (2009)).
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We propose that machine learning techniques can be harnessed in helping re-
searchers generate such models. Our approach consists of employing a form of
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tionary pressure is created to guide a population of solutions to an increasingly
higher quality. In this case our individuals are network generative models, and
their quality is a measure of how much a synthetic network generated by a model
approximates the real observable network.

Two fundamental issues have to be addressed in implementing this tech-
nique: how to represent models in an uniform way that can be recombined and
how to measure the similarity between a synthetic and a real network.

The first problem touches on a limitation of current “network science”: there
is no formal way of representing processes similar to the way differential equa-
tions are used to model many systems. To address this we introduce the con-
cept of network generator as a computer program — or simply generators for
the purposes of this article. We define a network generative process as a se-
quence of discrete steps where a new arc is created at each step. The process
can be straightforwardly applied to both directed and undirected networks. At
any given moment, there is a set of possible arcs that could be created. A gener-
ator becomes fully defined if it provides a way to prefer some arc over the oth-
ers. Instead of attempting to define a deterministic selection process we create
a stochastic one — recognizing that many of the generative processes that pro-
duce complex networks have some degree of intrinsic randomness. Our genera-
tors thus attribute weights to arcs in a sample extracted from the set of all possi-
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Figure 2 | Overview of results for five datasets (one per row). The columns, in order, represent: the generator expression, a visualisation of the synthetic
and real networks and a radar graph showing each of the metrics – the outer circle indicates the value of 1, lower is better, best generator shown in blue, all
others in grey. The symbols on the radars represent the various distribution distance measures employed in the fitness function: k, kin and kout for degree,
in-degree and out-degree; PRd and PRu for directed and undirected PageRank; dd and du for directed and undirected distance and t for the triadic profile.
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1.2 Political Blogs

w(i , j ) = exp(4°2d)

The political blogs generator takes a single variable: d. Unlike with d

D

, the case where

d = 1 can happen, as this distance may be caused by an arc with the opposite direction of the

one being proposed. This generator behaviour can be simply described, as shown in figure 1.
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Figure 1: Weight of political blogs generator as a function of the undirected distance.

Reciprocity is strongly encouraged, given the high weight given to arcs with d = 1. In fact,

this situation necessarily corresponds to a reciprocal arc (linking to a blog that linked to you),

because arcs that already exist are not allowed in the sample. Then, weight decreases as undi-

rected distance increases, but never to 0. This distribution of weights according to undirected

distances is sufficient to generate the two communities in the network — links between blogs

that have a low undirected distance are more probable, but links to more distant blogs are also

possible. This leads to the low density of links between the two communities. Surprisingly, it

3
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Figure 2 | Overview of results for five datasets (one per row). The columns, in order, represent: the generator expression, a visualisation of the synthetic
and real networks and a radar graph showing each of the metrics – the outer circle indicates the value of 1, lower is better, best generator shown in blue, all
others in grey. The symbols on the radars represent the various distribution distance measures employed in the fitness function: k, kin and kout for degree,
in-degree and out-degree; PRd and PRu for directed and undirected PageRank; dd and du for directed and undirected distance and t for the triadic profile.
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GENERATOR SIMILARITIES

There are two parameters that introduce trade-offs in the search process: sample
ratio and anti-bloat tolerance.

Sample ratio is a trade-off between generator accuracy (lower samples leading to
more randomness against the linking preference defined by the generator) and
computational effort (higher samples require more generator evaluations per link
generation step).

Being V the set of vertices, sr a predefined sampling ratio, A the set of all possible
arcs (jAj5 jVj2) and A9 the set of all arcs that do not currently exist in the network (A9
5 {a g Ajwa 5 0}, wa being the weight of arc a), we define a sample S with jSj5 n 5 sr

? jAj such that S 5 {s1, …, sn} with si g A9.
In the experiments presented in this article, we do not allow duplicate or self-links.

These restrictions could trivially be lifted if appropriate.
The value we propose was set sufficiently high to work with the smaller networks in

our data set – at some point, the sample becomes too small and the generators operate
too randomly to lead to evolutionary improvement. Conversely, the sample size could
be made smaller to reduce the computational effort for very large networks.

Anti-bloat tolerance is a trade-off between result quality and conciseness. Here we
adjusted once and for all the value against our initial experiment, C. Elegans, and
found 15% to stall evolution and 5% to lead to hard to interpret, bloated solutions.
Without any further parameters adjustment, we then tested the algorithm against real
and synthetic datasets, having found that this leads to perfect solution on the synthetic
cases and robust results on the other 6 real-world networks. It is possible that these

parameters can be further optimised for specific cases or if more computational effort
can be tolerated. However, in this work we strived to demonstrate the general
applicability of the method.

The stop condition (1000 stable generations) and random tree generation para-
meters (detailed in Supp. Info.) are conventional genetic programming parameters
and were set within ranges that are very common in the literature. Given the heuristic
nature of genetic programming, it is impossible to avoid such parameters. Quoting ‘‘A
Field Guide to Genetic Programming’’14:

‘‘It is impossible to make general recommendations for setting optimal parameter
values, as these depend too much on the details of the application. However, genetic
programming is in practice robust, and it is likely that many different parameter
values will work.’’

The quality and meaning of the results presented are not contingent on these
parameters, as these only affect the search process itself. Further efforts on parame-
trisation may lead to higher quality results being found. We avoided such efforts to
prevent a bias for our dataset. We propose that this increases credence on the general
applicability of the method.

Ultimately, while we believe to have demonstrated the effectiveness of a heuristic
search algorithm, this, of course, does not preclude refinements by further research.
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Networks are a powerful abstraction with applicability to a variety of scientific fields. Models explaining
their morphology and growth processes permit a wide range of phenomena to be more systematically
analysed and understood. At the same time, creating such models is often challenging and requires insights
that may be counter-intuitive. Yet there currently exists no general method to arrive at better models. We
have developed an approach to automatically detect realistic decentralised network growth models from
empirical data, employing a machine learning technique inspired by natural selection and defining a unified
formalism to describe such models as computer programs. As the proposed method is completely general
and does not assume any pre-existing models, it can be applied ‘‘out of the box’’ to any given network. To
validate our approach empirically, we systematically rediscover pre-defined growth laws underlying several
canonical network generation models and credible laws for diverse real-world networks. We were able to
find programs that are simple enough to lead to an actual understanding of the mechanisms proposed,
namely for a simple brain and a social network.

I
ncreasingly many scientific domains rely on the concept of networks to represent an observable state of a
system, where networks are usually seen as the outcome of a generative process. For systems without cen-
tralised control, these generative processes consist of local interactions between entities, be they proteins,

neurons, organisms, people or organisations.
While current technological advances have been making it increasingly easy to collect datasets for large net-

works, it is difficult to extract models from this data. This difficulty can be attributed both to the sheer size of the
datasets and to the non-linear dynamics of many of these decentralised systems, which resist reductionist
methodologies. Another difficulty is posed by the mapping between generative models and observable networks
since there is a many-to-many correspondence between generative models and observable networks. A network
may be explained by different models and a model – provided it is stochastic in nature – may be capable of
generating different classes of networks due to the amplification of initial random fluctuations.

Following conventional scientific methodology, researchers devise models that can account for a network and
then test the quality of the model against a number of metrics. Much-cited examples include preferential
attachment1, competition between nodes2,3, team assembly mechanisms4, random networks with constraints5–7,
inter alia. Models are typically based on intuition or prior evidence that such and such process appears to be
particularly important in the formation of interactions. A problem here is that of human bias in looking for good
models. There is always the possibility that high-quality models are counter-intuitive, and thus unlikely to be
proposed by researchers.

The work we report in this paper work is aligned with the idea of creating artificial scientists. Parts of the
scientific method are automated, namely the generation and refinement of hypothesis, as well as their testing
against observables. For example, in a work with some parallels to the ideas presented in this paper, scientific laws
are extracted from experimental data using genetic programming8.

There have been some preliminary attempts at using genetic programming to search for network models21–23,
and to structural analysis and community detection24. However, to the best of our knowledge, we provide the first
proof-of-concept application of symbolic regression to discover and select plausible morphogenetic processes for
real-world networks. The method we propose can be applied to both synthetic networks and on real-world
networks. In the case of synthetic networks, it makes it possible to discover the exact generative rule used to
construct the particular type of network in question, while in the case of real-world networks, it proposes a
generative rule that robustly reproduces the original topological features. Furthermore, in contrast with previous
works, our approach relies only on local information and uses a parameter-free fitness function without any ad-
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generating different classes of networks due to the amplification of initial random fluctuations.

Following conventional scientific methodology, researchers devise models that can account for a network and
then test the quality of the model against a number of metrics. Much-cited examples include preferential
attachment1, competition between nodes2,3, team assembly mechanisms4, random networks with constraints5–7,
inter alia. Models are typically based on intuition or prior evidence that such and such process appears to be
particularly important in the formation of interactions. A problem here is that of human bias in looking for good
models. There is always the possibility that high-quality models are counter-intuitive, and thus unlikely to be
proposed by researchers.

The work we report in this paper work is aligned with the idea of creating artificial scientists. Parts of the
scientific method are automated, namely the generation and refinement of hypothesis, as well as their testing
against observables. For example, in a work with some parallels to the ideas presented in this paper, scientific laws
are extracted from experimental data using genetic programming8.

There have been some preliminary attempts at using genetic programming to search for network models21–23,
and to structural analysis and community detection24. However, to the best of our knowledge, we provide the first
proof-of-concept application of symbolic regression to discover and select plausible morphogenetic processes for
real-world networks. The method we propose can be applied to both synthetic networks and on real-world
networks. In the case of synthetic networks, it makes it possible to discover the exact generative rule used to
construct the particular type of network in question, while in the case of real-world networks, it proposes a
generative rule that robustly reproduces the original topological features. Furthermore, in contrast with previous
works, our approach relies only on local information and uses a parameter-free fitness function without any ad-
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Networks are a powerful abstraction with applicability to a variety of scientific fields. Models explaining
their morphology and growth processes permit a wide range of phenomena to be more systematically
analysed and understood. At the same time, creating such models is often challenging and requires insights
that may be counter-intuitive. Yet there currently exists no general method to arrive at better models. We
have developed an approach to automatically detect realistic decentralised network growth models from
empirical data, employing a machine learning technique inspired by natural selection and defining a unified
formalism to describe such models as computer programs. As the proposed method is completely general
and does not assume any pre-existing models, it can be applied ‘‘out of the box’’ to any given network. To
validate our approach empirically, we systematically rediscover pre-defined growth laws underlying several
canonical network generation models and credible laws for diverse real-world networks. We were able to
find programs that are simple enough to lead to an actual understanding of the mechanisms proposed,
namely for a simple brain and a social network.

I
ncreasingly many scientific domains rely on the concept of networks to represent an observable state of a
system, where networks are usually seen as the outcome of a generative process. For systems without cen-
tralised control, these generative processes consist of local interactions between entities, be they proteins,

neurons, organisms, people or organisations.
While current technological advances have been making it increasingly easy to collect datasets for large net-

works, it is difficult to extract models from this data. This difficulty can be attributed both to the sheer size of the
datasets and to the non-linear dynamics of many of these decentralised systems, which resist reductionist
methodologies. Another difficulty is posed by the mapping between generative models and observable networks
since there is a many-to-many correspondence between generative models and observable networks. A network
may be explained by different models and a model – provided it is stochastic in nature – may be capable of
generating different classes of networks due to the amplification of initial random fluctuations.

Following conventional scientific methodology, researchers devise models that can account for a network and
then test the quality of the model against a number of metrics. Much-cited examples include preferential
attachment1, competition between nodes2,3, team assembly mechanisms4, random networks with constraints5–7,
inter alia. Models are typically based on intuition or prior evidence that such and such process appears to be
particularly important in the formation of interactions. A problem here is that of human bias in looking for good
models. There is always the possibility that high-quality models are counter-intuitive, and thus unlikely to be
proposed by researchers.

The work we report in this paper work is aligned with the idea of creating artificial scientists. Parts of the
scientific method are automated, namely the generation and refinement of hypothesis, as well as their testing
against observables. For example, in a work with some parallels to the ideas presented in this paper, scientific laws
are extracted from experimental data using genetic programming8.

There have been some preliminary attempts at using genetic programming to search for network models21–23,
and to structural analysis and community detection24. However, to the best of our knowledge, we provide the first
proof-of-concept application of symbolic regression to discover and select plausible morphogenetic processes for
real-world networks. The method we propose can be applied to both synthetic networks and on real-world
networks. In the case of synthetic networks, it makes it possible to discover the exact generative rule used to
construct the particular type of network in question, while in the case of real-world networks, it proposes a
generative rule that robustly reproduces the original topological features. Furthermore, in contrast with previous
works, our approach relies only on local information and uses a parameter-free fitness function without any ad-
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Fig. 3 Network generators mapped into a two-dimensional layout according to their pairwise dis-
tances. Different colors and shapes indicate families of generators that were manually identified as
semantically similar. The legend shows the pattern that identifies each family.
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Family List of generator functions and corresponding network number hIDi

0.08 0.88 0.95 54.6 0.62 6.0
ER h14i h50i h78i h82i h108i h124i

c (max(ki, i) = 0 ! 0,0.63)
h198i

ID i i
i h58i h109i

ID’ ei ei

ei h18i h139i

k k k k k k
PA h26i h81i h100i h105i h111i h134i

k k k k
h145i h170i h227i

PA’ k j
ki (min( j, .66) > ki ! j,ek j )(min(( j=0,k j ,ki),e

k j )) ki
k j

k
k j
i

h0i h47i h193i

SC-a y8(k2
j , .62)� ki y7(k3,4)

yg(ks,c) h69i h126i

y3(2k, .48) y9(eki , .49) y4(ek,1.1) y5(
emax(ki ,k j )

ki
,ki) y5(ek,1)

SC-b h3i h36i h39i h80i h90i

yg(ek,> 1
2 ) y4(ek,1) y8(ek,d) y4(ki, .67)ki y5(ek,1.7) y3(ek,2)

h110i h138i h153i h213i h224i

y9(kk,0) y6(3k,0) y4(4 · k5,0) y8(kk,0) y3(eki+k j , .05)
h23i h31i h41i h57i h97i

SC-g y3(ek,0) y3(2k,0) y6(ey5(1,k),0)+ .07 y7(ek,0) y4(ek, .06)
yg(kB,⇠ 0) h104i h127i h141i h155i h157i

y2(ki · ek j ,0) y4(ek,0) y5(k7, .01) y5(ek, .03)
h164i h177i h235i h236i

y4(ei,eki ) y4(i j,k j) y2( ji,ki) y3(ei,ki) y3(ei,e7) y3(ei,1)
SC-d h6i h89i h92i h121i h137i h148i

yg(ei,⇤) y2(9i,99) y3(ei, j) y3(ei+ j�d ,e5) y4(9i,9)
h181i h184i h196i h202i

9y3(iki,2ki) y4(ik j,6k j) y5( jk j,k j) y9(iki, .1ki) y2( jk j,k j) y7( jk j,7k j)
h9i h24i h25i h37i h75i h91i

SC-e y6(iki, .44ki) y4( jki, .38) y3( jki,k j) y4(i log(ki),0) y3( jki,
ki
4 )

yg(ik,⇤) h106i h107i h115i h165i h166i

(
k jki
.66 +d)y4( j, .61) y3(ik j,2k j) y3(ik j,k j) y3(iki,0) y4(iki,3ki)

h188i h194i h206i h209i h218i

y7(i,0)k j 7
d y4(iki , .48) y4(

ik j

k j
, .18) y8(iki ,2) y4(iki ,0) y4(

1
6 iki ,d)

SC-z h68i h93i h95i h125i h156i h179i

yg(ik,⇤) y9(d jki ,0) ymin(i,4)(iki ,0) y5(9 jki , .03)
h185i h195i h219i

y5((iki)2, i) y5(iki
2,6) y4(2980.96k2,2k) y2(ik j

2,k j
2)

SC-h h16i h128i h132i h163i

yg(ik2,⇤) y7(yi(.5,k j
2),0)

h182i

SC-q y4(k,0)� .99 y7(k,0)� .93
yg(k,0)�1 h8i h83i

Table 2 Generator expressions for each family. c represents a constant value, s a small exponent,
B a big exponent and ⇤ is used as a placeholder for an arbitrary expression.
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lyzed in that work, the Facebook ego network was the only one based on an affinity
function with a constant number of groups. This presents us with additional em-
pirical evidence that this is in fact a characteristic signature of ego-centered social
networks.

SC families differ in the linking behavior for nodes deemed to belong to the same
group. Some of them are purely based on topological factors (families a , b , g and
q ), one only on exogenous factors (family d ) and some on a combination of both
(families e , z and h).

The largest family is e , which assigns probability of in-group links as a linear
combination of current degree (k) and exogenous factors (i). The second largest
family by number of generators found is family g , and it is also the one that is the
most spread in the spatial embedding. In this family, the probability of in-group
connections is purely driven by topology, as an exponential of the current degree of
one of the nodes. We can think of it as a form of super-preferential attachment within
social circles – current popularity within the group is highly rewarded. For most of
the cases, the probability of connection between groups is given by a relatively small
constant, and for a few it is zero.
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Fig. 4 Top panel, and bottom-left: Boxplots of numbers of nodes, edges and densities for the
underlying networks of the various families, as well as all, unclassified and classified. Horizontal
dashed line indicates overall median. Bottom-right: Stacked plot of family ratio per percentile of
network density.
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