INTRODUCTION TO

NETWORK MORPHOGENESIS

Camille Roth CNRS

Centre Marc Bloch Berlin e.V.
(BMBF / CNRS / Humboldt Universität / MAE)

reconstructing using	processes	structure
processes	Preferential attachment Link prediction, classifiers Scoring methods	PA-based models Rewiring models Cost optimization Agent-based models
structure	ERGMs, p1, p* Markov graphs SOAMs	Prescribed structure, edge swaps Subgraph-based Kronecker graphs

reconstructing using	processes	structure
	Preferential attachment	PA-based models
processes	Link prediction, classifiers Scoring methods	Rewiring models Cost optimization Agent-based models
structure	ERGMs, p1, p* Markov graphs SOAMs	Prescribed structure, edge swaps Subgraph-based Kronecker graphs

PREFERENTIAL ATTACHMENT

de Solla Price, 1976

"A general theory of bibliometric and other cumulative advantage processes"

Fig. 1. Number of papers with (a) exactly and (b) at least n citations in $1 / 4,1$, and 5 -year indexes.

Polya Urn model

over n urns with uniform initial conditions
(converges to a power law with exponent 2)
"cumulative advantage theory"
...then relaxing uniformity

PREFERENTIAL ATTACHMENT

"Classical" preferential attachment:

- assuming that links do not attach uniformly with respect to degree k, with a bias function $\Pi(\mathbf{k})$ depicting the degree increment of degree-k nodes

$$
\kappa(k)=\int_{1}^{k} \Pi\left(k^{\prime}\right) \mathrm{d} k^{\prime}
$$

(b)

Fig. 7. Cumulated preferential attachment $(k(k))$ of incoming new nodes for the M and NS database. Results computed by considering the new nodes coming in the specified year, and the network formed by nodes already present up to this year. In the absence of preferential attachment $\kappa(k) \sim k$, shown as continuous line on the figures.

PREFERENTIAL ATTACHMENT

"Classical" preferential attachment:

- assuming that links do not attach uniformly with respect to degree k, with a bias function $\Pi(\mathbf{k})$ depicting the degree increment of degree-k nodes

- ...or that links attach with respect to degrees of link extremities $\Pi\left(\mathbf{k}_{1}, \mathbf{k}_{\mathbf{2}}\right)$

$$
\kappa\left(k_{1} k_{2}\right)=\int_{1}^{k_{1} k_{2}} \Pi\left(k_{1}^{\prime} k_{2}^{\prime}\right) \mathrm{d}\left(k_{1}^{\prime} k_{2}^{\prime}\right)
$$

Fig. 8. Internal preferential attachment for the M and NS database, 3D plots: $\pi\left(k_{1}, k_{2}\right)$ as a function of k_{1} and k_{2}. Results computed on the cumulative data in the last considered year.

PREFERENTIAL ATTACHMENT

Yook, Jeong, Barabasi, 2002

"Modeling the
internet's large-scale topology"
spatial distance

Worldwide router density map (2002)
$\Pi\left(k_{j}, d_{i j}\right) \sim k_{j}^{\alpha} / d_{i j}^{\sigma}$,

PREFERENTIAL ATTACHMENT

Preferential attachment may work for any type of variable

- propension to create/receive links with respect to dyad properties, i.e. comparing the values of $\mathbf{P}(\mathbf{L} \mid \mathrm{d})$ for various values of \mathbf{d}
- or computing the relative propension of appearance of a link between a dyad \mathbf{d} relatively to the baseline

$$
\frac{P(L \mid d)}{P(L)}=\frac{\nu(d)}{\nu} \cdot \frac{N}{N(d)}
$$

PREFERENTIAL ATTACHMENT

Preferential attachment may work for any type of variable

- propension to create/receive links with respect to dyad properties, i.e. comparing the values of $\mathbf{P}(\mathbf{L} \mid \mathrm{d})$ for various values of \mathbf{d}
- or computing the relative propension of appearance of a link between a dyad d relatively to the baseline

$$
\frac{P(L \mid d)}{P(L)}=\frac{\nu(d)}{\nu} \cdot \frac{N}{N(d)}
$$

PREFERENTIAL ATTACHMENT

Preferential attachment may work for any type of variable

- propension to create/receive links with respect to dyad properties, i.e. comparing the values of $\mathbf{P}(\mathrm{L} \mid \mathrm{d})$ for various values of \mathbf{d}
- or computing the relative propension of appearance of a link between a dyad d relatively to the baseline

$$
\frac{P(L \mid d)}{P(L)}=\frac{\nu(d)}{\nu} \cdot \frac{N}{N(d)}
$$

PREFERENTIAL ATTACHMENT

Papadopoulos, Kissak, AngelesSerrano, Bogunó, Krioukov, 2012

"Popularity versus
similarity in growing
networks"

1) initial empty network
2) new node t appears at (t, θ)
3) connects to m nodes with smallest $s \theta_{s t}$

PREFERENTIAL

Papadopoulos, Kissak, Ángeles-

 Serrano, Bogunó, Krioukov, 2012"Popularity versus similarity in growing networks"

PREFERENTIAL ATTACHMENT

Papadopoulos, Kissak, ÁngelesSerrano, Bogunó, Krioukov, 2012

"Popularity versus
similarity in growing networks"

SCORING METHODS - I

Derived from AI / machine learning

- targeted at link predicition rather than behavior estimation

Scoring methods

- based on a predictor function score (x, y)
 using measures such as number of common neighbors, Jaccard coefficients, Katz' distance $\sum_{\ell=1}^{\infty} \beta^{\ell} \cdot \mid$ paths $\mathbf{x}_{x, y}^{\langle\ell|}$
- computes the list of scores of pairs (x, y) of a network observed over [$\mathrm{t}_{0}, \mathrm{t}_{1}$]
- predicts new links for $\dagger>\dagger_{1}$ according to decreasing values of score, among the non-connected pairs during [$\mathrm{t}_{0}, \mathrm{t}_{1}$]

SCORING METHODS - II

Classifier-based methods

- using a variety of features altogether:
- number of common linked blogs
- common URLs
- textual cosine similarity
- degree similarity
- and SVM-classifiers or classical logistic regressions in order to predict the existence (or not) of:
> - one-way / two-way links,

- explicit infection links

SCORING METHODS - III

Clauset, Moore,

Newmon, 2008

Given a dendrogram and a set of probabilities p_{r}, the hierarchical random graph model generates artificial networks with a specified hierarchical structure

Figure $1 \mid$ A hierarchical network with structure on many scales, and the corresponding hierarchical random graph. Each internal node r of the dendrogram is associated with a probability p_{r} that a pair of vertices in the left and right subtrees of that node are connected. (The shades of the internal nodes in the figure represent the probabilities.)

SCORING METHODS - III

Clauset, Moore,

 Newmon, 2008"Hierarchical structure and the prediction of missing links in networks"

Given a dendrogram and a set of probabilities p_{r}, the hierarchical random graph model generates artificial networks with a specified hierarchical structure

Figure $1 \mid$ A hierarchical network with structure on many scales, and the corresponding hierarchical random graph. Each internal node r of the

Figure 3 | Comparison of link prediction methods. Average AUC statisticthat is, the probability of ranking a true positive over a true negative-as a function of the fraction of connections known to the algorithm, for the link
prediction method presented here and a variety of previously published methods. a, Terrorist association network; \mathbf{b}, T. pallidum metabolic network; c, grassland species network.

SCORING METHODS - III

Guimerì̀, SulesPardo, 2009

"Missing and spurious interactions and the
reconstruction of complex networks"

Fig. 1. Stochastic block models. A stochastic block model is fully specified by a partition of nodes into groups and a matrix Q in which each element $Q_{\alpha \beta}$ represents the probability that a node in group α connects to a node in group β. (A), A simple matrix of probabilities \mathbf{Q}. Nodes are divided in three groups (which contain 4,5 , and 6 nodes, respectively) and are represented as squares, circles, and triangles depending on their group. The value of each element $Q_{\alpha \beta}$ is indicated by the shade of gray; for example, squares do not connect to other squares, and connect to triangles with small probability, but squares connect to circles with high probability. (B) A realization of the model in A. In this realization, the number of links between the square and the triangle group is $I_{\square \Delta}=4$, whereas the maximum possible number of links between these groups is $r_{\square \Delta}=24$.

SCORING METHODS - III

Guimerì̀, SulesPardo, 2009

"Missing and spurious interactions and the reconstruction of complex networks"

Fig. 1. Stochastic block models. A stochastic block model is fully specified by a partition of nodes into groups and a matrix Q in which each element $Q_{\alpha \beta}$ represents the probability that a node in group α connects to a node in group β. (A), A simple matrix of probabilities \boldsymbol{Q}. Nodes are divided in three groups (which contain 4, 5, and 6 nodes, respectively) and are represented as squares, circles, and triangles depending on their group. The value of each element $Q_{\alpha \beta}$ is indicated by the shade of gray; for example, squares do not connect to other squares, and connect to triangles with small probability, but squares connect to circles with high probability. (B) A realization of the model in A. In this realization, the number of links between the square and the triangle group is $l_{\square \Delta}=4$, whereas the maximum possible number of links between these groups is $r_{\square \triangle}=24$.

reliability of link ij: $\quad R_{i j}^{L}=\frac{1}{Z} \sum_{P \in \mathcal{P}}\left(\frac{l_{\sigma_{i} \sigma_{j}}^{O}+1}{r_{\sigma_{i} \sigma_{j}}+2}\right) \exp [-\mathcal{H}(P)]$

Fig. 3. Reconstruction of the air transportation network of Eastern Europe. (A) The true air transportation network. The area of each node is proportional to its betweenness centrality, with Moscow being the most central node in the network. (B) The observed air transportation network, which we build by randomly removing 20\% of the real links and replacing them by random links. (C) The reconstructed air transportation network that we obtain, from the observed network, applying the heuristic reconstruction method described

reconstructing		
using	processes	structure

ECONOMETRIC METHODS - I

Holland,
 Leinhordt, 1981

"An exponential family of probability distributions for directed graphs"
p_{1} model

$$
p_{1}(G) \sim \exp \left(\sum_{i} \lambda_{i} v_{i}(G)\right)=\Pi_{i} \exp \left(\lambda_{i} v_{i}(G)\right)
$$

Dyadic		
Choice	ϕ	$L=\sum_{i j} X_{i j}=X_{++}$
Mutuality	ρ	$M=\sum_{i<j} X_{i j} X_{j i}$

Effect	Explanatory variable	Model parameter	Estimated value	Approximate standard error
Choice	$L^{\text {same }}$	$\phi^{\text {same }}$	-2.17	1.15
Mutual	$L^{\text {differ }}$	$\phi^{\text {differ }}$	-4.30	1.17
	$M^{\text {gg }}$	$\rho^{\text {gg }}$	3.15	0.69
	$M^{\text {bb }}$	$\rho^{\text {bb }}$	3.05	0.49
	$M^{\text {differ }}$	$\rho^{\text {differ }}$	3.95	0.72

ECONOMETRIC METHODS - I

Holland,
 Leinhordt, 1981

"An exponential family of probability distributions for directed graphs"

p_{1} assumes independence

 between dyads:- limits the model to
simple dyad-centric
observables:
principally,
degree and reciprocity
p_{1} model

$$
p_{1}(G) \sim \exp \left(\sum_{i} \lambda_{i} v_{i}(G)\right)=\Pi_{i} \exp \left(\lambda_{i} v_{i}(G)\right)
$$

Dyadic		
Choice	ϕ	$L=\sum_{i j} X_{i j}=X_{++}$
Mutuality	ρ	$M=\sum_{i<j} X_{i j} X_{j i}$

Effect	Explanatory variable	Model parameter	Estimated value	Approximate standard error
Choice	$L^{\text {same }}$	$\phi^{\text {same }}$	-2.17	1.15
Mutual	$L^{\text {differ }}$	$\phi^{\text {differ }}$	-4.30	1.17
	$M^{\text {gg }}$	$\rho^{\text {gg }}$	3.15	0.69
	$M^{\text {bb }}$	ρ^{bb}	3.05	0.49
	$M^{\text {differ }}$	$\rho^{\text {differ }}$	3.95	0.72

ECONOMETRIC METHODS - I

Holland,
 Leinhordt, 1981

"An exponential family of probability distributions for directed graphs"

p_{1} assumes independence

 between dyads:$$
p_{1}(G) \sim \exp \left(\sum_{i} \lambda_{i} v_{i}(G)\right)=\Pi_{i} \exp \left(\lambda_{i} v_{i}(G)\right)
$$

Dyadic		
Choice	ϕ	$L=\sum_{i j} X_{i j}=X_{++}$
Mutuality	ρ	$M=\sum_{i<j} X_{i j} X_{j i}$

- limits the model to
simple dyad-centric
observables:
principally,
degree and reciprocity

Effect	Explanatory variable	Model parameter	Estimated value	Approximate standard error
Choice	$L^{\text {same }}$	$\phi^{\text {same }}$	-2.17	1.15
Mutual	$L^{\text {differ }}$	$\phi^{\text {differ }}$	-4.30	1.17
	$M^{\text {gg }}$	$\rho^{\text {gg }}$	3.15	0.69
	$M^{\text {bd }}$	$\rho^{\text {bb }}$	3.05	0.49
	$M^{\text {differ }}$	$\rho^{\text {differ }}$	3.95	0.72

can nonetheless be applied to:

- a partition of the network into subgroups

Fienberg, Meyer, Wasserman, 1985

ECONOMETRIC METHODS - I

Holland,
Leinhordt, 1981
"An exponential family of probability distributions for directed graphs"

p_{1} assumes independence

 between dyads:- limits the model to
simple dyad-centric
observables:
principally,
degree and reciprocity

$$
p_{1}(G) \sim \exp \left(\sum_{i} \lambda_{i} v_{i}(G)\right)=\Pi_{i} \exp \left(\lambda_{i} v_{i}(G)\right)
$$

Dyadic		
Choice	ϕ	$L=\sum_{i j} X_{i j}=X_{++}$
Mutuality	ρ	$M=\sum_{i<j} X_{i j} X_{j i}$

Effect	Explanatory variable	Model parameter	Estimated value	Approximate standard error
Choice	$L^{\text {same }}$	$\phi^{\text {same }}$	-2.17	1.15
Mutual	$L^{\text {differ }}$	$\phi^{\text {differ }}$	-4.30	1.17
	$M^{\text {gg }}$	$\rho^{\text {gg }}$	3.15	0.69
	$M^{\text {bd }}$	$\rho^{\text {bb }}$	3.05	0.49
	$M^{\text {differ }}$	$\rho^{\text {differ }}$	3.95	0.72

can nonetheless be applied to:

- a partition of the network into subgroups Fienberg, Meyer, Wasserman, 1985

ECONOMETRIC METHODS - I

Exponential Random Graph Models (ERGMs)

Frank, Strauss, 1986
"Markov Graphs"

$$
P(\mathbf{X}=\mathbf{x})=\frac{\exp \left(\theta_{1} z_{1}(\mathbf{x})+\cdots+\theta_{r} z_{r}(\mathbf{x})\right)}{\kappa(\theta)}
$$

Dyadic	ϕ	$L=\sum_{i j} X_{i j}=X_{++}$
Choice	ρ	$M=\sum_{i<j} X_{i j} X_{j i}$
Mutuality		
Triadic	τ_{T}	$T_{T}=\sum_{i, j, k} X_{i j} X_{j k} X_{i k}$
Transitivity		

ECONOMETRIC METHODS - I

Exponential Random Graph Models (ERGMs)

Frank, Strauss, 1986
"Markov Graphs"

$$
P(\mathbf{X}=\mathbf{x})=\frac{\exp \left(\theta_{1} z_{1}(\mathbf{x})+\cdots+\theta_{r} z_{r}(\mathbf{x})\right)}{\kappa(\theta)}
$$

Dyadic	ϕ	$L=\sum_{i j} X_{i j}=X_{++}$
Choice	ρ	$M=\sum_{i<j} X_{i j} X_{j i}$
Mutuality		
Triadic	τ_{T}	$T_{T}=\sum_{i, j, k} X_{i j} X_{j k} X_{i k}$
Transitivity		

ECONOMETRIC METHODS - I

Exponential Random Graph Models (ERGMs)

$$
P(\mathbf{X}=\mathbf{x})=\frac{\exp \left(\theta_{1} z_{1}(\mathbf{x})+\cdots+\theta_{r} z_{r}(\mathbf{x})\right)}{\kappa(\theta)}
$$

In practice estimating $\mathbf{\kappa}(\theta)$ is generally untractable

- logit models:
considering the odds that link i-j is present

$$
\omega_{i j}=\log \left(\frac{P\left(\mathbf{x}_{i j}^{+}\right)}{P\left(\mathbf{x}_{i j}^{-}\right)}\right)=\sum_{p=1}^{r} \theta_{p}\left(z_{p}\left(\mathbf{x}_{i j}^{+}\right)-z_{p}\left(\mathbf{x}_{i j}^{-}\right)\right)
$$

Dyadic		
Choice	ϕ	$L=\sum_{i j} X_{i j}=X_{++}$
Mutuality	ρ	$M=\sum_{i<j} X_{i j} X_{j i}$
Triadic		
Transitivity	τ_{T}	$T_{T}=\sum_{i, j, k} X_{i j} X_{j k} X_{i k}$

ECONOMETRIC METHODS - I

ExOOnentia Random Grann Modes (ERGMS)

Fronk, Strouss, 1986

"Markov Graphs"
In pr
\qquad

Variable	Parameter	Estimated value	Standard error
Choice	$\phi_{3 \mathrm{rd}}$	0.54	0.68
	$\phi_{4 \mathrm{th}}$	2.56	0.58
	$\phi_{5 \mathrm{th}}$	1.44	0.74
Mutuality	$\rho_{3 \mathrm{rd}}=\rho_{4 \mathrm{th}}=\rho_{5 \mathrm{th}}$	1.81	0.20
	$\rho_{5 \mathrm{th}, \mathrm{gg}}$	2.74	1.10
Degree Centralization	$\alpha_{5 \mathrm{th}}$	4.37	1.78
Acceptance	$\gamma_{3 \mathrm{rd}}=\gamma_{5 \mathrm{th}}$	1.32	0.17
Ratings	$\gamma_{4 \mathrm{th}}$	0.62	0.17
Transitivity	$\tau_{T, 3 \mathrm{rd}, \mathrm{gg}}=\tau_{T, 3 \mathrm{rd}, \mathrm{bb}}=\tau_{T, 3 \mathrm{rd}, \mathrm{gb}}=\tau_{T, 4 \mathrm{th}}$	0.28	0.02
	$\tau_{T, 5 \mathrm{th}}$		

Dyadic		
Choice	ϕ	$L=\sum_{i j} X_{i j}=X_{++}$
Mutuality	ρ	$M=\sum_{i<j} X_{i j} X_{j i}$
Triadic		
Transitivity	τ_{T}	$T_{T}=\sum_{i, j, k} X_{i j} X_{j k} X_{i k}$

ECONOMETRIC METHODS - II

"Stochastic actor-oriented model":
(Snijders, 2001; see also the SIENA package at http://www.stats.ox.ac.uk/~ snijders/siena

In the case of dynamic networks, we assume an objective function which agents try to optimize:

- which depends on each agent \mathbf{i} and a set of agent-centered parameterized observables $\mathbf{S}_{\mathbf{i}, \mathbf{p}} \mathbf{(X)}$

$$
f_{i}(\mathbf{X}, \theta)=\sum_{p=1}^{r} \theta_{p} s_{i, p}(\mathbf{X})
$$

- assuming the process is a Markov Chain: at each step, an actor may (myopically) change an outgoing link, optimizing her objective function (plus an i.i.d. "random utility" component)
- estimate the parameter vector $\boldsymbol{\theta}$ that explains best relation changes

ECONOMETRIC METHODS - II

(Snidders, 2001; see also the SIENA package of htip://www.stats.ox.ac..uk/ \sim sniiders/sieno
TABLE 1
Parameters and Standard Errors for Models Estimated Using Observations at t_{1}, t_{2}, t_{3}

Effect	Model 1		Model 2		Model 3	
	Par.	(s.e.)	Par.	(s.e.)	Par.	(s.e.)
Rate (period 1)	3.87		3.78		3.91	
Rate (period 2)	3.10		3.14		3.07	
Density	-1.48	(0.30)	-1.05	(0.19)	-1.13	(0.22)
Reciprocity	1.98	(0.31)	2.44	(0.40)	2.52	(0.37)
Transitivity	0.21	(0.11)	-		-	
Balance	-0.33	(0.66)	-		-	
Indirect relations	-0.347	(0.074)	-0.557	(0.083)	-0.502	(0.084)
Gender activity	-		-		-0.60	(0.28)
Gender popularity	-		-		0.64	(0.24)
Gender dissimilarity	-		-		-0.42	(0.24)

PRESCRIBED STRUCTURAL FEATURES

Random graphs with prescribed degree distributions

\qquad a.k.a. "configuration model"
using generating functions

FIG. 9. The probability distribution of numbers of co-directors in the Fortune 1000 graph. The points are the real-world data, the solid line is the bipartite graph model, and the dashed line is the Poisson distribution with the same mean. Insets: the equivalent distributions for the numbers of collaborators of movie actors and physicists.

$$
\begin{aligned}
& G_{0}(x)=\sum_{k=0}^{\infty} p_{k} x^{k} \\
& G_{0}(1)=\sum_{k} p_{k}=1 \\
& G_{0}^{\prime}(1)=\sum_{k} k p_{k}=\langle k\rangle
\end{aligned}
$$

(Newman, Strogatz, Waits, 2001)

$$
\langle s\rangle=1+\frac{G_{0}^{\prime}(1)}{1-G_{1}^{\prime}(1)}
$$

mean component size

Random graphs with prescribed degree distributions

\qquad a.k.a. "configuration model"
using generating functions

$$
\begin{aligned}
& G_{0}(x)=\sum_{k=0}^{\infty} p_{k} x^{k} \\
& G_{0}(1)=\sum_{k} p_{k}=1 \\
& G_{0}^{\prime}(1)=\sum_{k} k p_{k}=\langle k\rangle
\end{aligned}
$$

(Newmon, Sirogaiz, Waits, 2001)
$\langle s\rangle=1+\frac{G_{0}^{\prime}(1)}{1-G_{1}^{\prime}(1)}$
mean component size

Random graphs with prescribed subgraph distributions

ration function formalism
(Karrer, Newman, 2010)

mean component size

$$
S=1-(1-2 a) \mathrm{e}^{-c_{1} S-c_{2} S(2-S)}-2 a \mathrm{e}^{-4 c_{1} S-4 c_{2} S(2-S)}
$$

PRESCRIBED STRUCTURAL FEATURES

Random graphs with prescribed degree correlations

class of dK-graphs preserving node degree correlations

 within subgraphs of size d: OK preserves average degree, 1 K degree distribution, 2 K degree correlations, etc.

- increasingly precise, and reproduces assortativity, clustering, distance and Laplacian eigenvalues as early as 2 K

Figure 2: The $d K$ - and $d K$-random graph hierarchy.

PRESCRIBED GRAPH CONSTRAINTS

Exploring a graph space with prescribed constraints

typically using edge swaps for degree-preserving constraints

Fig. 1. Simple Markov graph for a constraint on a graph of (i) three nodes with (ii) given in- and out-degree distributions and (iii) without multiple edges but possibly self-loops. Nonvalid swaps are represented by self-loops in this Markov graph, which has thus a constant degree.

PRESCRIBED GRAPH CONSTRAINTS

Exploring a graph space with prescribed constraints

- typically using edge swaps for degree-preserving constraints
- or higher-level constraints using so-called "k-edge swaps"

PRESCRIBED GRAPH CONSTRAINTS

Fig. 4. Left: Illustration of the increasing possibilities of k-switches for $k \in\{2,3,4\}$ in the case of "R-B-G" triangles. Right: Number of "R-B-G" triangles with respect to the number of k-switch trials, for $k \in\{2,3,4\}$ (averages and corresponding confidence intervals computed over 10,000 simulations for each k).

PRESCRIBED GRAPH CONSTRAINTS

Fig. 4. Left: Illustration of the increasing possibilities of k-switches for $k \in\{2,3,4\}$ in the case of "R-B-G" triangles. Right: Number of "R-B-G" triangles with respect to the number of k-switch trials, for $k \in\{2,3,4\}$ (averages and corresponding confidence intervals computed over 10,000 simulations for each k).
$-\mathbf{C}_{3}^{\emptyset}$. The graph is undirected, with a fixed degree distribution, has no multiple edges nor self-loops.
$-\mathbf{C}_{3}^{+}$. The number of (undirected) triangles remains the same.

Fig. 6. Cumulative mean number of 4-nodes cycles for \mathbf{C}_{3}.

KRONECKER GRAPHS

$$
\begin{gathered}
N_{k}=\left(N_{1}\right)^{k} \text { and } E_{k}=\left(E_{1}\right)^{k} \\
\mathbf{C}=\mathbf{A} \otimes \mathbf{B} \doteq\left(\begin{array}{cccc}
a_{1,1} \mathbf{B} & a_{1,2} \mathbf{B} & \ldots & a_{1, m} \mathbf{B} \\
a_{2,1} \mathbf{B} & a_{2,2} \mathbf{B} & \ldots & a_{2, m} \mathbf{B} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n, 1} \mathbf{B} & a_{n, 2} \mathbf{B} & \ldots & a_{n, m} \mathbf{B}
\end{array}\right)
\end{gathered}
$$

Kronecker product of two matrices

KRONECKER GRAPHS

(b) Intermediate stage
(a) $\operatorname{Graph} K_{1}$

1	1	0
1	1	1
0	1	1

(d) Adjacency matrix
of K_{1}
(c) Graph $K_{2}=K_{1} \otimes K_{1}$

K_{1}	$\mathrm{~K}_{1}$	0
$\mathrm{~K}_{1}$	$\mathrm{~K}_{1}$	$\mathrm{~K}_{1}$
0	$\mathrm{~K}_{1}$	$\mathrm{~K}_{1}$

(e) Adjacency matrix of $K_{2}=K_{1} \otimes K_{1}$

$\mathbf{C}=\mathbf{A} \otimes \mathbf{B} \doteq\left(\begin{array}{cccc}a_{1,1} \mathbf{B} & a_{1,2} \mathbf{B} & \ldots & a_{1, m} \mathbf{B} \\ a_{2,1} \mathbf{B} & a_{2,2} \mathbf{B} & \ldots & a_{2, m} \mathbf{B} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n, 1} \mathbf{B} & a_{n, 2} \mathbf{B} & \ldots & a_{n, m} \mathbf{B}\end{array}\right)$
Kronecker product of two matrices

Figure 1: Example of Kronecker multiplication: Top: a "3-chain" initiator graph and its Kronecker product with itself. Each of the X_{i} nodes gets expanded into 3 nodes, which are then linked using Observation 1. Bottom row: the corresponding adjacency matrices. See Figure 2 for adjacency matrices of K_{3} and K_{4}.
(Leskovec, Chokrabarti,
Kleinberg, Falouisos, thathromin, 2010)

KRONECKER GRAPHS

(a) Graph K_{1}

1	1	0
1	1	1
0	1	1

(d) Adjacency matrix
of K_{1}

(b) Intermediate stage

(c) Graph $K_{2}=K_{1} \otimes K_{1}$

K_{1}	$\mathrm{~K}_{1}$	0
$\mathrm{~K}_{1}$	$\mathrm{~K}_{1}$	$\mathrm{~K}_{1}$
0	$\mathrm{~K}_{1}$	$\mathrm{~K}_{1}$

(e) Adjacency matrix of $K_{2}=K_{1} \otimes K_{1}$

Figure 1: Example of Kronecker multiplication: Top: a "3-chain" initiator graph and its Kronecker product with itself. Each of the X_{i} nodes gets expanded into 3 nodes, which are then linked using Observation 1. Bottom row: the corresponding adjacency matrices. See Figure 2 for adjacency matrices of K_{3} and K_{4}.

$$
\mathbf{C}=\mathbf{A} \otimes \mathbf{B} \doteq\left(\begin{array}{cccc}
a_{1,1} \mathbf{B} & a_{1,2} \mathbf{B} & \ldots & a_{1, m} \mathbf{B} \\
a_{2,1} \mathbf{B} & a_{2,2} \mathbf{B} & \ldots & a_{2, m} \mathbf{B} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n, 1} \mathbf{B} & a_{n, 2} \mathbf{B} & \ldots & a_{n, m} \mathbf{B}
\end{array}\right)
$$

Kronecker product of two matrices

(Leskovec, Chokroborti, Kleinberg, Falouisos, Ghahramin, 2010)

(a) K_{3} adjacency matrix (27×27)

(b) K_{4} adjacency matrix (81×81)

Figure 2: Adjacency matrices of K_{3} and K_{4}, the $3^{r d}$ and $4^{\text {th }}$ Kronecker power of K_{1} matrix as defined in Figure 1. Dots represent non-zero matrix entries, and white space represents zeros. Notice the recursive self-similar structure of the adjacency matrix.

KRONECKER GRAPHS

$$
\begin{gathered}
N_{k}=\left(N_{1}\right)^{k} \text { and } E_{k}=\left(E_{1}\right)^{k} \\
\mathbf{C}=\mathbf{A} \otimes \mathbf{B} \doteq\left(\begin{array}{cccc}
a_{1,1} \mathbf{B} & a_{1,2} \mathbf{B} & \ldots & a_{1, m} \mathbf{B} \\
a_{2,1} \mathbf{B} & a_{2,2} \mathbf{B} & \ldots & a_{2, m} \mathbf{B} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n, 1} \mathbf{B} & a_{n, 2} \mathbf{B} & \ldots & a_{n, m} \mathbf{B}
\end{array}\right)
\end{gathered}
$$

Kronecker product of two matrices

(Leskovec, Chakrobarifi, Kleinberg, Faloutsos, Ghahramin, 2010)

Figure 21: Epinions who-trusts-whom social network: Overlayed patterns of real network and the fitted Kronecker graph using only 4 parameters (2×2 initiator matrix). Again, the synthetic Kronecker graph matches all the properties of the real network.

reconstructing		
		processes
using		structure

REWIRING / OPTIMIZATION MODELS

Watts-Strogatz' small-world model: prescribed fixed degree, rewiring

REWIRING / OPTIMIZATION MODELS

Watts-Strogatz' small-world model: prescribed fixed degree, rewiring

(b)

(Watis, Strogatz, 1999)

REWIRING / OPTIMIZATION MODELS

Watts-Strogatz' small-world model: prescribed fixed degree, rewiring

(b)

Colizza et al.' "Network structure from selection principles" rewiring according to a global cost function

AGENT-BASED MODELS

Specific (stochastic) rules

- see Zero-Crossing Model

(a) Blogosphere

(b) Blog network

(c) Post network

Network of posts and blogs

Burstiness of blog posting behavior

Model decision tree

Modeling Users' Activity on Twitter Networks: Validation of Dunbar's Number

Bruno Gonçalves ${ }^{\mathbf{1 , 2}}$, Nicola Perra ${ }^{1,3 *}$, Alessandro Vespignani ${ }^{\mathbf{1 , 2 , 4}}$

1 School of Informatics and Computing, Center for Complex Networks and Systems Research, Indiana University, Bloomington, Indiana, United States of America, 2 Pervasive Technology Institute, Indiana University, Bloomington, Indiana, United States of America, $\mathbf{3}$ Complex Systems Computational Lab, Linkalab, Cagliari, Italy, 4 Institute for Scientific Interchange, Turin, Italy

Abstract

Microblogging and mobile devices appear to augment human social capabilities, which raises the question whether they remove cognitive or biological constraints on human communication. In this paper we analyze a dataset of Twitter conversations collected across six months involving 1.7 million individuals and test the theoretical cognitive limit on the number of stable social relationships known as Dunbar's number. We find that the data are in agreement with Dunbar's result; users can entertain a maximum of 100-200 stable relationships. Thus, the 'economy of attention' is limited in the online world by cognitive and biological constraints as predicted by Dunbar's theory. We propose a simple model for users' behavior that includes finite priority queuing and time resources that reproduces the observed social behavior.

Modeling Users' Activity on Twitter Networks: Validation of Dunbar's Number

Bruno Gonçalves ${ }^{1,2}$, Nicola Perra ${ }^{1,3_{*}^{*}}$, Alessandro Vespignani ${ }^{1,2,4}$

1 School of Informatics and Computing, Center for Complex Networks and Systems Research, Indiana University, Bloomington, Indiana, United States of America 2 Pervasive Technology Institute, Indiana University, Bloomington, Indiana, United States of America, $\mathbf{3}$ Complex Systems Computational Lab, Linkalab, Cagliari, Italy 4 Institute for Scientific Interchange, Turin, Italy

Abstract

Microblogging and mobile devices appear to augment human social capabilities, which raises the question whether they remove cognitive or biological constraints on human communication. In this paper we analyze a dataset of Twitter conversations collected across six months involving 1.7 million individuals and test the theoretical cognitive limit on the number of stable social relationships known as Dunbar's number. We find that the data are in agreement with Dunbar's result; users can entertain a maximum of 100-200 stable relationships. Thus, the 'economy of attention' is limited in the online world by cognitive and biological constraints as predicted by Dunbar's theory. We propose a simple model for users' behavior that includes finite priority queuing and time resources that reproduces the observed social behavior.

AGENT-BASED MODELS

Specific stochastic rules

see Message Queuing Models
(Gonçlves, Perra, Vespignani, 2011)

1. each user has a message queue of some maximum size
2. they reply to a random number of messages, proportionally to the outdegree of the sender

3. the model features a simple, uniform initialization process

reconstructing using	processes	structure
processes	Preferential attachment Link prediction, classifiers Scoring methods	PA-based models Rewiring models Cost optimization Agent-based models
structure	ERGMs, p1, p* Markov graphs SOAMs Symbolic	Prescribed structure, edge swaps Subgraph-based Kronecker graphs

SYMBOLIC REGRESSION

HOWTO PROPOSE PLAUSIBLE GENERATIVE MODELS FORA GIVEN COMPLEX

SYMBOLIC REGRESSION

HOWTO PROPOSE PLAUSIBLE GENERATIVE MODELS FOR A GIVEN COMPLEX

- designing network models is challenging - stylized hypotheses based on intuition
- approach based on stochastic simulation driven by treebased programs
- automatic discovery (a.k.a. symbolic regression) through genetic programming

SYMBOLIC REGRESSION

HOWTO PROPOSE PLAUSIBLE GENERATIVE MODELS FOR A GIVEN COMPLEX

We need:

- a grammar and vocabulary
- comparison metrics
- an evolutionary process

```
SCIENTIFIC
REP%RTS
```

OPEN Symbolic regression of generative

SUBJECT AREAS:
SCIENTIFIC DATA
MACHINE LEARNING
sofiware
APPLIED MATHEMATICS network models

Telmo Menezes ${ }^{1,2}$ \& Camille Roth ${ }^{1}$
Centre Marc Bloch Berlin (An-Inssitut der Humboldt Univesisitit, UMIFRE CNRS.MAE) Friedrichstr. 191, 10117 Berlin, Germany
Centre d'Analyse et de Mathématique Socioles (UMR 8557 CNRSSEHESS) 190 av. de France, 75013 Paris, France.

NETWORK MODELS AS TREE-BASED PROGRAMS

Vocabulary: the usual suspects

- in- and out-degrees $\mathbf{k}, \mathbf{k}^{\prime}$
- undirected, directed and reverse distances $\mathbf{d}, \mathbf{d}_{\mathbf{D}}$ and $\mathbf{d}_{\mathbf{R}}$
- sequential identifier i

Grammar:

- +, -, *,/
trees and $\cdot x^{y}, e^{x}, \log , a b s$, min, max
operators
- $>,<,=,=0$
- affinity function Ψ

$$
\psi(i, j, g, a, b)= \begin{cases}a, & \text { if } i \bmod g=j \bmod g \\ b, & \text { otherwise }\end{cases}
$$

$$
P_{i j}=\frac{w_{i j}}{\sum_{\left(i^{\prime}, j^{\prime}\right) \in S} w_{i^{\prime} j^{\prime}}}
$$

$$
w i, j=\exp (4-2 d)
$$

FITNESS FUNCTION AS NORMALIZED NETWORK METRICS

Metrics set: the usual suspects

- in- and out-degree distributions
- directed and undirected PageRank distributions
- distance distributions
- triadic profiles (Milo et al., 2005)

EVOLUTIONARY PROCESS

- Evolutionary algorithm iteratively improves generator

EVOLUTIONARY PROCESS

- Evolutionary algorithm iteratively improves generator

Random generator:

EVOLUTIONARY PROCESS

- Evolutionary algorithm iteratively improves generator

Program mutation:

EVOLUTIONARY PROCESS

- Evolutionary algorithm iteratively improves generator

Program mutation:

ARTIFICIAL CASES

$$
\mathrm{w}(i, j)=\mathrm{k}(j)
$$

$$
\mathrm{w}(i, j)=1
$$

Word adjacencies

$$
\mathrm{w}(i, j)=k(i)-\mathrm{d}
$$

\mathbf{k}, yet not too far

(dataset from Newman, 2006)

Political blogs

$$
\mathrm{w}(i, j)=\exp (4-2 \mathrm{~d})
$$

close, reciprocal

(dataset from Adamic \& Glance, 2005)

Facebook

$$
\mathrm{w}(i, j)=\psi(3, i \cdot \mathrm{k}(i), \mathrm{k}(i)) \quad 3 \text { groups, local PA }
$$

(dataset from Leskovec \& Mc Auley, 20I2)

Power grid

Protein interactions

$\begin{cases}\log (i), & \text { if } \mathrm{k}(j)= \begin{cases}0, & \text { if } \mathrm{k}(i)<4 \\ \mathrm{k}(i), & \text { otherwise } \\ -1, & \text { otherwise }\end{cases} \end{cases}$
a priori logarithmic distribution of affinity, for some pairs

GENERATOR SIMILARITIES

Figure $4 \mid$ Similarity of generators. Comparison between generator similarity to the optimal generator (p27) and fitness.

- Propose an artificial scientist to guide hypothesis search
- Decipher the genotype of networks from their phenotype

TAKE-HOME PAPER

SCIENTIFIC
 REP:RTS

Symbolic regression of generative network models

Telmo Menezes ${ }^{1,2}$ \& Camille Roth ${ }^{1}$

${ }^{1}$ Centre Marc Bloch Berlin (An-Institut der Humboldt Universitöt, UMIFRE CNRS-MAE) Friedrichstr. 191, 10117 Berlin, Germany Centre Marc Bloch Berlin (An-Institiut der Humboldt Universitat, UMIFRE CNRS-MAE) Friedrichstr. 191,1 Paris, Brance.
${ }^{2}$ Centre d'Analyse et de Mathématique Sociales (UMR 8557 CNRS-EHESS) 190 av. de France, 75013 Par

Networks are a powerful abstraction with applicability to a variety of scientific fields. Models explaining their morphology and growth processes permit a wide range of phenomena to be more systematically analysed and understood. At the same time, creating such models is often challenging and requires insight that may be counter-intuitive. Yet there currently exists no general method to arrive at better models. We have developed an approach to automatically detect realistic decentralised network growth models from empirical data, employing a machine learning technique inspired by natural selection and defining a unified formalism to describe such models as computer programs. As the proposed method is completely general and does not assume any pre-existing models, it can be applied "out of the box" to any given network. To validate our approach empirically, we systematically rediscover pre-defined growth laws underlying several canonical network generation models and credible laws for diverse real-world networks. We were able to find programs that are simple enough to lead to an actual understanding of the mechanisms proposed, namely for a simple brain and a social network.

TAKE-HOME SOFTWARE

- Propose an artificial scientist to guide hypothesis search
- Decipher the genotype of networks from their phenotype

TAKE-HOME PAPER

SCIENTIFIC
 REP:RTS

Symbolic regression of generative network models

Telmo Menezes ${ }^{1,2}$ \& Camille Roth ${ }^{1}$

${ }^{1}$ Centre Marc Bloch Berlin (An-Institut der Humboldt Universitöt, UMIFRE CNRS-MAE) Friedrichstr. 191, 10117 Berlin, Germany ${ }^{2}$ Cenitre d'Analyse et de Mathématique Sociales (UMR 8557 CNRS-EHESS) 190 av. de France, 75013 Paris, France.

- Synthetic open-source tool
- https://github.com/telmomenezes/synthetic

GENOTYPE FAMILIES

using 238 anonymized Facebook ego-centered friendship networks

"Algopol" application

GENOTYPE FAMILIES

> using 238 anonymized Facebook ego-centered friendship networks

"Algopol" application

GENOTYPE FAMILIES

> using 238 anonymized Facebook ego-centered friendship networks

GENOTYPE FAMILIES

using 238 anonymized
Facebook ego-centered friendship networks

"Algopol" application

Fig. 3 Network generators mapped into a two-dimensional layout according to their pairwise distances. Different colors and shapes indicate families of generators that were manually identified as semantically similar. The legend shows the pattern that identifies each family.

Fig. 4 Top panel, and bottom-left: Boxplots of numbers of nodes, edges and densities for the underlying networks of the various families, as well as all, unclassified and classified. Horizontal dashed line indicates overall median. Bottom-right: Stacked plot of family ratio per percentile of network density.

